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Abstract

Levitated oscillators provide a unique opportunity for quantum sensing due

to their potential for high quality factors and macroscopic size. However,

preparation of a pure quantum state of motion has been obstructed by tech-

nical challenges with active cooling schemes and laser noise with passive

cavity schemes. Recently, the field of levitated cavity optomechanics has

seen a renaissance due to the adaptation of coherent scattering from atomic

physics. This departure from the traditional paradigm of dispersive cou-

pling promises to bypass the technological barriers and allow for ground

state cooling. Moreover, the obtainable coupling rates are expected to be

an order of magnitude larger than in the dispersive case.

In a first experiment, a levitated dielectric nanoparticle is weakly coupled

to the optical cavity via coherent scattering and cooled to the ground state of

its motion. This is the first demonstration of such a macroscopic solid cooled

to its ground state without the use of cryogenics. In a second experiment,

the coupling is increased to the strong coupling regime whereby the modes of

the optical resonator and mechanical oscillator are hybridized. The resulting

normal mode splitting is observed and used to characterize the coupling rate.

In a third experiment, the coupling is increased further such that system

is situated deep in the ultrastrong coupling regime where the system is

dynamically unstable and exhibits an avoided crossing. This is the first solid-

state optomechanical device to operate in the ultrastrong coupling regime.

These three results lay a foundation for full quantum control of massive

mechanical oscillators.
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Zusammenfassung

Levitierte Oszillatoren bieten aufgrund ihres Potenzials für hohe Qualitätsfaktoren

und ihrer makroskopischen Größe eine einzigartige Gelegenheit für die Quan-

tensensorik. Die Herstellung eines reinen Quantenbewegungszustands wurde

jedoch durch technische Herausforderungen bei aktiven Kühlsystemen und

Laserrauschen bei passiven Hohlraumsystemen behindert. In jüngster Zeit

hat das Gebiet der Optomechanik mit schwebenden Hohlräumen durch die

Adaption der kohärenten Streuung aus der Atomphysik eine Renaissance

erlebt. Diese Abkehr vom traditionellen Paradigma der dispersiven Kopp-

lung verspricht, die technologischen Barrieren zu umgehen und eine Kühlung

im Grundzustand zu ermöglichen. Außerdem dürften die erzielbaren Kopp-

lungsraten um eine Größenordnung höher sein als im dispersiven Fall.

In einem ersten Experiment wird ein schwebendes dielektrisches Nano-

partikel über kohärente Streuung schwach an den optischen Hohlraum ge-

koppelt und auf den Grundzustand seiner Bewegung abgekühlt. Dies ist die

erste Demonstration eines solchen makroskopischen Festkörpers, der ohne

den Einsatz von Kryotechnik auf seinen Grundzustand abgekühlt wird. In

einem zweiten Experiment wird die Kopplung bis zur starken Kopplung

erhöht, wodurch die Moden des optischen Resonators und des mechanischen

Oszillators hybridisiert werden. Die daraus resultierende Normalmodenauf-

spaltung wird beobachtet und zur Charakterisierung der Kopplungsrate ver-

wendet. In einem dritten Experiment wird die Kopplung weiter erhöht, so

dass sich das System tief im Bereich der ultrastarken Kopplung befindet,

wo das System dynamisch instabil ist und einen vermiedenen Übergang auf-

weist. Dies ist die erste optomechanische Festkörpervorrichtung, die im Be-

reich der ultrastarken Kopplung arbeitet. Diese drei Ergebnisse bilden die

Grundlage für die vollständige Quantenkontrolle von massiven mechanischen

Oszillatoren.
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Preface

This dissertation is written in the style of an AMO dissertation in that it

progresses from theory to the experimental apparatus to the results. This is

because, up until the third year of PhD I worked in ultracold atomic gases.

At this point, a catastrophic failure crippled our experiment. During the

rebuild I became connected with Prof. Aspelmeyer and we continued to

work together after the ultracold atomic gas experiment was rebuilt. While

I transitioned to optomechanics as my main field of research, I have always

retained the identity of an AMO physicist and this shows in my work.

As a consequence of this and my rapid induction to a new field, this work

is written from the perspective of an outsider. The theory may be overly

detailed at certain points but this reflects my journey through the material.

I hope this proves useful for future members of our community.

iii



Acknowledgments

These acknowledgements come in two parts for my Zeilinger and Aspelmeyer

days. Flying out to Vienna, as what I now feel to be a kid, I was won over by

Michi and Mateusz’ enthusiasm and bright attitude about the experiment

and, even more importantly, life. I am grateful for the years of tutelage and

friendship Michi gave me. Throughout this, Anton has been an inspiration

and someone I respect immensely. Certainly a scientific force to be reckoned

with, Anton has formed my perspective on science and research in general.

His ability to cut through to the heart of a problem is something I have

aspired to over my entire PhD and I hope I can approach his level someday.

Without Markus’ crazy zeal, I doubt I would have made it through a

change of fields in as good a shape as I did. Being swept up in his whirlwind

of energy and scientific fervour, I was given every opportunity to excel.

Thanks to the whole group, I think I was able to capitalize on some of

them. Without Uros taking me under his wing, I wouldn’t be where I am

now. Not to mention being a fellow dad surviving the early years of our kids

together. Mel made the long nights of ground state measurements bearable

with his mellow and easygoing attitude. If I were stuck on a desert island

with only one person to do long frustrating measurements with, he would

be the one I’d choose, no doubt. As our cavity team grew, so too did my

great fortune at being able to work with bright minds like Aisling, Anton,

Ayub, Janneck, Livia and of course Yuriy (Iurie, Lurie, Dragomir, Olga? I

never know...). The future of the levitation is extremely bright. All of these

people of course participated in my education in the way of foosball. While

I may not have made the transition from weak to ultrastrong, I hope I at

least made it to decent.

Of course as a kid a long way away from home, I couldn’t have gotten

iv



Acknowledgments

through everything without my ’genius’ brothers Jarda and Krishna. Boul-

dering and building, these two have become two of my closest friends with

their willingness to pursue stupid ideas together.

I don’t think Zoya needs me to write down how much she has carried

me through this experience. Truly the best partner I could ever imagine.

Thankfully we were blessed with the greatest little man in Elio. He surely

could have made the last couple of years of my PhD significantly harder if

he wanted but alas he takes after his mother and is truly wonderful.

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 The Theory of Levitated Cavity Optomechanics . . . 2

1.1.2 The Experimental Apparatus . . . . . . . . . . . . . . . 3

1.1.3 Coupling Regimes . . . . . . . . . . . . . . . . . . . . . 3

I The Theory of Levitated Cavity Optomechanics 4

2 Levitated Optomechanics . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Optical Dipole Traps . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Harmonic Trapping Potential . . . . . . . . . . . . . . . 7

2.1.2 Optical Tweezers . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Radiation Pressure . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.5 Anhormonicity . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.6 Beyond TEM00 . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Optomechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

vi



Table of Contents

2.2.1 The Thermal Mechanical Oscillator in Classical Me-

chanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 The Thermal Mechanical Oscillator in Quantum Me-

chanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Phononic Representation . . . . . . . . . . . . . . . . . 18

2.3 Heating Rates and Dissipation . . . . . . . . . . . . . . . . . . 19

2.3.1 Background Gas Collisions . . . . . . . . . . . . . . . . 20

2.3.2 Intensity Noise . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Trap Shaking . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.4 Photon Recoil . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.5 Black Body Radiation . . . . . . . . . . . . . . . . . . . 23

3 Optical Cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Classical Optical Modes . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Quantum Optical Modes . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Relation to Caldeira-Legget . . . . . . . . . . . . . . . . 33

4 Levitated Cavity Optomechanics . . . . . . . . . . . . . . . . . 34

4.1 Linear Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Optomechanical Cooperativity . . . . . . . . . . . . . . 37

4.2 Dispersive Coupling . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Coherent Scattering . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Heating Rates and Dissipation . . . . . . . . . . . . . . . . . . 43

4.4.1 Intensity Noise . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.2 Finite Laser Linewidth and Laser Phase Noise . . . . 45

II The Experimental Apparatus 47

5 The Experimental Apparatus . . . . . . . . . . . . . . . . . . . 48

5.1 Overview of the Apparatus . . . . . . . . . . . . . . . . . . . . 48

5.2 Particle Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.1 The Nanoparticle . . . . . . . . . . . . . . . . . . . . . . 51

5.2.2 Aerosolization and the Nebulizer . . . . . . . . . . . . 52

vii



Table of Contents

5.2.3 Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.4 Limitations and Future Considerations . . . . . . . . . 54

5.3 Laser Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.1 Master Laser . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.2 Cavity Lock . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.3 Optical Tweezer . . . . . . . . . . . . . . . . . . . . . . 61

5.3.4 Local Oscillators . . . . . . . . . . . . . . . . . . . . . . 63

5.4 The Vacuum System . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.1 Pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.2 Future Considerations . . . . . . . . . . . . . . . . . . . 67

5.5 The Optical Cavity . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5.1 Cavity Insertion . . . . . . . . . . . . . . . . . . . . . . . 69

5.5.2 Noise and Drifts . . . . . . . . . . . . . . . . . . . . . . 70

5.5.3 Tweezer Referencing . . . . . . . . . . . . . . . . . . . . 71

5.5.4 Future Considerations . . . . . . . . . . . . . . . . . . . 75

5.6 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6.1 Tweezer Detection . . . . . . . . . . . . . . . . . . . . . 80

5.6.2 Cavity Detection . . . . . . . . . . . . . . . . . . . . . . 82

5.7 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . 85

III Coupling Regimes 86

6 Coupling vs. Dissipation . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 Weak Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1.1 Ground State Cooling . . . . . . . . . . . . . . . . . . . 90

6.2 Strong Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2.1 Observation of Normal Mode Splitting . . . . . . . . . 95

6.3 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . 98

7 Coupling vs. Transition Energy . . . . . . . . . . . . . . . . . . 100

7.1 Ultrastrong Coupling . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1.1 Dynamical Instability . . . . . . . . . . . . . . . . . . . 102

7.1.2 Avoided Crossing . . . . . . . . . . . . . . . . . . . . . . 103

viii



Table of Contents

7.2 Deep-Strong Coupling . . . . . . . . . . . . . . . . . . . . . . . 103

7.2.1 Z-Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . 109

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A Calculations & Derivations . . . . . . . . . . . . . . . . . . . . . 111

A.1 Thermal Mechanical Oscilator in Classical Mechanics . . . . 111

A.1.1 Homogeneous Equation Ansatz . . . . . . . . . . . . . 111

A.1.2 Inhomogeneous Equation Ansatz . . . . . . . . . . . . 112

A.1.3 PSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.2 Thermal Mechanical Oscilator in Quantum Mechanics . . . . 117

A.2.1 Caldeira-Leggett Equation of Motion . . . . . . . . . . 117

B Tight Focusing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

C Linear Coupling Solution . . . . . . . . . . . . . . . . . . . . . . 130

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

ix



Chapter 1

Introduction

Purcell discovered that the engineering of the environment can modify the

spontaneous emission probabilities of a quantum system [1]. This lay the

foundation for what we now call cavity quantum electrodynamics (cavity

QED). Researchers have since developed a variety of experimental platforms

seeking to increase the coupling between light and matter [2–7]. This has

lead to the observation phenomena like vacuum Rabi oscillations [8], single-

photon sources [9], and entanglement [10–15].

Recently, this has been introduced to the field of levitated cavity optome-

chanics [16, 17]. In this case, a dielectric nanoparticle acts as the emitter

inside of an optical cavity, coupling its motion to the cavity mode. This in-

teraction was adapted from atomic physics [18]. Prior to this the field of cav-

ity optomechanics was restricted to dispersive coupling schemes where the

motion of the oscillator was coupled to the cavity mode through the modifi-

cation of the round-trip phase. This new coupling benefits from the Purcell

enhancement of the scattering probability, allowing for new opportunities

to engineer the light-matter coupling. Since its inception, levitated cavity

optomechanics has been motivated by its application to quantum sensing

[19, 20] due to its promise of high quality factors in room-temperature en-

vironments1. In addition, contemporary solid state devices used in levi-

tated cavity optomechanics consist of approximately 109 atoms existing in a

joint motional mode, allowing for a unique opportunity for state engineering

through the flexibility of optical technologies. It is therefore critical that the

engineering of this interaction be studied.

This dissertation will cover both the theoretical and experimental in-

1It has been realized by now that photon recoil prevents infinite Q-factors in conven-
tional tweezer traps.[17]
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1.1. Overview of Thesis

vestigation into engineering the light-matter coupling between a levitated

mechanical oscillator and an optical resonator. We will demonstrate both

the limits this coupling can reach as well as how it may be employed for

quantum control of the system.

1.1 Overview of Thesis

This dissertation is split into three main parts: the theoretical background

for the optomechanical behaviour, the overview of the experimental appara-

tus and detection techniques and the resulting measurements. In Chapters

2, 3, and 4 we discuss the theory of levitated optomechanics, optical cavities

and then levitated cavity optomechanics. This structure will allow us to

piecewise construct a full model of the system. Chapter 5 will elaborate on

all of the experimental details. In chapter 6 we will discuss the operation

of our system in the weak coupling regime with a particular focus on its

application to ground state cooling of the mechanical oscillator. Lastly, we

will extend this to the strong and ultrastrong coupling regimes in Chapter

7 and verify our theoretical model with experimental results.

1.1.1 The Theory of Levitated Cavity Optomechanics

Chapter 2: We disassmble our apparatus into the mechanical and optical

subsystems. In Chapter 2 we discuss the mechanical subsystem consisting

of a dielectric nanosphere levitated by an optical tweezer through the dipole

interaction. We write down the full Hamiltonian for this case including dissi-

pation through the use of the Caldeira-Leggett model of an oscillator coupled

to its environment. We compute the dynamics of this subsystem and con-

clude by computing the associated heating and damping rates for relevant

couplings. Chapter 3: In this chapter we consider the optical subsystem con-

sisting of a double-sided optical cavity which is coupled to the environment

through the imperfect cavity mirrors. We again compute the dynamics of

the system in the quantum regime. Chapter 4: We start by linearly coupling

the optical and mechanical subsystems and computing the full dynamics of

2



1.1. Overview of Thesis

the system. We outline the implications of the coupling strength on the

steady-state behaviour of the system. We then outline physical processes

by which this coupling can be realized, namely a dispersive interaction or

a coherent-scattering interaction. We finish with the heating and damping

rates associated with this coupling.

1.1.2 The Experimental Apparatus

Chapter 5: We detail the experimental apparatus used in this disserta-

tion. This includes the optical tweezer, optical cavity, detection and vacuum

chamber.

1.1.3 Coupling Regimes

Chapter 6: Here we discuss the weak coupling regime as realized in our sys-

tem. We proceed to show how this can be leveraged to do cavity cooling and

prepare the mechanical oscillator in its motional ground state. Chapter 7:

We demonstrate how modifying some of the system parameters allows access

to the ultrastrong coupling regime. We report on measurements demonstrat-

ing the hybridization of the optical and mechanical modes as evidence for

strong coupling and, using the retrieved coupling rates, we characterize the

system both in the strong and ultrastrong regimes. We then provide an

outlook on how this can be extended in future work.

3



Part I

The Theory of Levitated

Cavity Optomechanics
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Chapter 2

Levitated Optomechanics

This chapter will serve as the foundation for our understanding of optome-

chanics in our system. The system we will consider here will consist of 3

main elements that will be elaborated upon in Chapter 5; the dielectric par-

ticle, the optical tweezer and the vacuum chamber. Our physical picture

can be seen in Figure 2.1 in which the dielectric particle is levitated in the

optical tweezer inside of a vacuum chamber. We will be mostly concerned

with the mechanics of the dielectric particle’s center of mass motion as it

interacts with the tweezer and its surrounding vacuum environment.

In doing so, we will build up a qualitative and quantitative understand-

ing of the optomechanics in this system which will then be built upon in

Chapter 4 when we complete this setup by introducing an optical cavity.

This ordering serves to highlight both the historical development but also

ascends a hierarchy of complexity.

2.1 Optical Dipole Traps

With the introduction of optical levitation by Arthur Ashkin and his col-

leagues [21], optical trapping of particles has become a standard technique

in fields ranging from physics[22] and chemistry[23] to biology [24]. This

revolutionary use of light-matter interaction is critical to our experiment as

it acts as the basic potential for our optomechanical oscillator. This has the

added benefit of decoupling our system from the environment, eliminating

the need for cryogenics that significantly complicated previous optomechan-

ical systems [25].

To understand this technique, we first consider a dielectric placed in an

electric field �E. The electric field induces a polarization in the material

5



2.1. Optical Dipole Traps

Figure 2.1: A sketch of a levitated optomechanical system. A tweezer
beam (red) is focused by a microscope objective (MO) and at the focus a
dielectric object (white circle) is trapped and acts as a mechanical oscillator.
The tweezer light can subsequently be used to detect the motion of the
oscillator. Some sort of polarization control (green) can be used to modify
the orientation of the trapping potential. In this dissertation, the dielectric
is trapped inside of a vacuum chamber to isolate the mechanical oscillator
from the environment.

6



2.1. Optical Dipole Traps

according to
�P (�x) = ✏0�

�E(�x) (2.1)

where ✏0 is the permittivity of free space and � = 3Re� ✏s−1✏s+2� is the electric

susceptibility of the dielectric with ✏s denoting the relative electric permit-

tivity of the dielectric. This induced polarization density can then interact

with the electric field, giving rise to an optical potential

U(�x) = −
1

2 �V
�P (�x) �E(�x)d

3
x, (2.2)

= −
1

2
✏0��

V
� �E(�x)�

2

d
3
x. (2.3)

where we are integrating over the volume of the dielectric. If we now consider

that this electric field is due to some optical field, and that the dielectric

is much smaller than the wavelength of that light, we can approximate the

electric field as constant over the volume of the dielectric, in which case we

can simplify the potential to

U(�x) = −
1

2
↵ind �

�E(�x)�
2

= −
↵ind

nc✏0

I(�x) (2.4)

where ↵ind = 3✏0�V is the polarizability of the dielectric and I(�x) is the

intensity of the light. We can immediately see then that the spatial profile

of the light field creates a conservative force �F (�x) = −∇U(�x) ∝ ∇I(�x). For

a focused laser beam, this gradient force becomes a potential well which,

depending on the power, can be deep enough to trap dielectric objects. This

is the mechanism behind an optical dipole trap or so-called optical tweezer.

2.1.1 Harmonic Trapping Potential

A useful way to frame this light-matter interaction is as a harmonic potential,

in which case we would approximate Equation 2.4 with a quadratic potential

of the form

U(�x) ≈
1

2
m⌦2

xx
2
+
1

2
m⌦2

yy
2
+
1

2
m⌦2

zz
2 (2.5)
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2.1. Optical Dipole Traps

where ⌦i are called the trap frequencies. In Appendix B, we show that, for

a gaussian laser beam propagating along the z-direction, one can show that

this is, in many applications, a good approximation and we can identify the

trap frequencies as

⌦x = ⌦y =

�

↵indP0

m⇡nc✏0

2

W
2

0

, (2.6)

⌦z =
1
√
2

W0

zR
⌦x,y, (2.7)

where the beam is propagating along the z−direction, P0 =
1

2
⇡I0W

2

0
is the

laser power, W0 is the beam waist (radius) and zR = ⇡W
2

0
�� is the Rayleigh

length of the beam. We denote ⌦x,y and ⌦z as the radial and axial frequen-

cies respectively.

Optical dipole traps can incorporate multiple laser beams to increase

the depth of the trapping potential or change the trapping frequencies. In

atomic physics for instance, a common technique is to create a so-called

crossed optical dipole trap consisting of two weakly focused laser beams

(W0 << zR) intersecting at some angle. This cross can greatly increase the

axial confinement along one laser beam that would’ve otherwise been set by

the Rayleigh length of the beam.

2.1.2 Optical Tweezers

An optical tweezer takes the extreme case of tightly focusing a laser beam.

This serves to increase the axial confinement to be more on par with the

radial confinement. When focusing this tightly, the beam is no longer a

simple gaussian beam and instead has some asymmetry in the radial direc-

tion arising from the polarization. A detailed discussion can be found in

8



2.1. Optical Dipole Traps

Appendix B in which we find the trap frequencies are modified to

⌦x =

�

↵indP0

m⇡nc✏0

(�ey �
2 − �ex�

2)i0i6 − i0i1 − 2�ex�2i24)
k
2

f0NA
, (2.8)

⌦y =

�

↵indP0

m⇡nc✏0

(�ex�
2 − �ey �

2)i0i6 − i0i1 − 2�ey �2i24)
k
2

f0NA
, (2.9)

⌦z =

�

↵indP0

m⇡nc✏0

1

2
(−2i0i3 − �i2�2)

k
2

f0NA
(2.10)

where ij are numerical factors, ex,y are the polarization components of the

electric field, f0 is the filling factor of the microscope object with numerical

aperture NA. We can see the symmetry of ⌦x and ⌦y is broken depending

on the polarization of the light which is critical behaviour not captured by

the simple gaussian model.

2.1.3 Radiation Pressure

One e↵ect we have neglected in this is the radiation pressure the dielectric

experiences due to the directionality of the tweezer laser. This displaces the

particle to a region in which the intensity is lower, decreasing the stability

of the trap [26, 27].

If we limit our interest to spherical dielectrics, we can take advantage of

the well known Mie solution to Maxwell’s equations to model the interplay

between the trapping and radiation pressure forces for arbitrary sized par-

ticles. For nanoparticles of radius r, we expect the trap frequency to scale

as r
3�2 while the radiation pressure scales as r

2 suggesting as the particle

size increases the radiation pressure should start to dominate. This is in

agreement with the full model of the trap frequency shown in Figure 2.2.

At a certain size it becomes impossible to trap a nanoparticle with a single

beam trap. This decrease in trap frequency as size increases is an important

observable e↵ect that we will return to in Chapter 7. One could counter-

act this e↵ect by employing more advanced experimental techniques such as

counterpropagating traps.
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2.1. Optical Dipole Traps

Figure 2.2: Trap frequencies for varying sized particles according
to the full Mie solution. The model uses parameters from the apparatus
given in Table 5.2

2.1.4 Absorption

A consequence of using an attractive laser potential (as opposed to a blue de-

tuned dipole trap in atomic systems [28–33, 22]) is the absorption of photons

by the dielectric material. Since the particle naturally occupies the region

of largest intensity, it is often times subject to a large amount of impinging

laser power. Despite small absorption cross-sections, internal temperatures

exceeding 1000K [34] are routinely reached. While still stable at these tem-

peratures, this can pose a problem to quantum experiments as decoherence

via blackbody emission can bring the coherence time prohibitively low[35].

As will be discussed later, the presence of air or other gas in the vac-

uum chamber can help mitigate the temperature increase by providing an

alternative cooling channel but at high-vacuum, where one could measure

10



2.1. Optical Dipole Traps

quantum phenomena, this is not the case. Taking the full model provided

in [34], we can map out the steady-state internal temperature of the parti-

cle as a function of background gas pressure and environment temperature

for standard tweezer parameters mentioned in Chapter 5. This is shown in

Figure 2.3 and it is clear that for all but cryogenic environments or high gas

pressures, the internal temperature of the dielectric is exceedingly high. One

can specifically choose dielectric materials and laser wavelengths to decrease

the absorption cross-section at the outset of an experiment.

For the experiments discussed in this dissertation, this has not been the

limiting factor but it is mentioned as it will quickly play a role as the next

steps are taken.

2.1.5 Anhormonicity

We have assumed the particle experiences a predominantly harmonic po-

tential which is increasingly the case as we cool the center-of-mass motion.

However, at higher motional amplitudes, the particle can explore more of

the potential in which case the harmonic approximation breaks down [36].

This can be the case for higher motional temperatures or for squeezed states

as will be discussed in more detail in Chapter 7.

In the experiments in this dissertation, we are mostly focused on the low

temperature regime where our approximation holds but it is worth noting

that at high vacuum the particle can experience the full potential.

2.1.6 Beyond TEM00

Another strength of optical trapping is the ability to rapidly transform the

potential in-situ with the use of devices like spatial light modulators (SLMs)

or acousto-optic-modulators (AOMs). In this way, arbitrary potentials can

be realized and manipulated, an opportunity that would be impossible in

tethered mechanical oscillators like membranes. These methods have given

rise to a wealth of interesting techniques [33, 37–40] and at its simplest this

allows for free-fall experiments where the optical trap is switched o↵ for

sometime to allow for wavepacket expansion.

11



2.2. Optomechanics

Figure 2.3: Equilibrium internal temperature of a 70nm silica
nanosphere subjected to standard trap conditions detailed in
Chapter 5. For low background gas pressures necessary for quantum ex-
periments, black body radiation is the dominant mechanism for releasing
absorbed energy by the particle since there are nearly no gas collisions to
take away energy. Even cryogenic gas temperatures alone are insu�cient to
significantly reduce the internal temperature of the nanoparticle.

2.2 Optomechanics

As we have already seen, the motion of our levitated particle is well described

by a harmonic oscillator. This fortuitous behaviour can be analytically

modelled for a number of relevant cases. We will hereby set out to model

the system to extract various measurable properties. It is instructive to first

examine the classical case before transitioning to a quantum mechanical

picture.
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2.2. Optomechanics

2.2.1 The Thermal Mechanical Oscillator in Classical

Mechanics

A homogeneous, linear equation of motion for a harmonic oscillator in 1D

can be written as

ẍ(t) + �ẋ(t) +⌦2

xx(t) = 0 (2.11)

where � is a damping term, ⌦x is the frequency of the oscillator and m

the mass. Figure 2.4 shows the solution to this homogeneous equation x(t)

which can be written as

x(t) = e
− 1

2

⌦0t
Q

�
��������
�
��������
�

x0 cos �
�

1 − 1(2Q)2⌦0t� +
2Q

ẋ0
⌦0
+x0�(2Q)2−1 sin �

�

1 − 1(2Q)2⌦0t� ,Q >
1

2
, underdamped

x0 + �ẋ0 +
1

2Q⌦0x0� t ,Q =
1

2
, critically damped

x0 cosh �
�

1(2Q)2 − 1⌦0t� +
2Q

ẋ0
⌦0
+x0�

1−(2Q)2 sinh �
�

1(2Q)2 − 1⌦0t� ,Q <
1

2
, overdamped

(2.12)

where Q = ⌦x�� is called the mechanical quality factor and quantifies how

many oscillations occur before the energy decays by a factor of 2. Higher

Q means that the oscillator has a longer coherence time. This simple case

already gives us some intuition for mechanical oscillators and why � and ⌦x

are called as such. We can expand on this simple homogeneous model by

adding some arbitrary forces Fi(t) such that our equation of motion becomes

ẍ(t) + �ẋ(t) +⌦2

xx(t) =
1

m
�

i

Fi(t). (2.13)

We can solve this second order ordinary di↵erential equation by working in

Fourier space in which case we can compactly write it as

x̃(!) =
�m(!)

m
�

i

F̃i(!). (2.14)

where we introduced the mechanical susceptibility

�m(!) =
1

⌦2
x − !

2 − i�!
. (2.15)
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2.2. Optomechanics

Figure 2.4: Example solutions x(t) to Equation 2.11 for varying
values of the quality factor Q. We can immediately see that for coherent
oscillations to persist, we want to operate well into the underdamped regime
where Q >

1

2
and the solution approaches undamped oscillations.

We are oftentimes interested in the spectral makeup of the motion of the har-

monic oscillator. To quantify this, we use the displacement power spectral

density (PSD)

Sxx(!) = lim
⌧→∞

1

⌧
���

⌧�2
−⌧�2 x(t)e

i!t
dt�

2

� . (2.16)

A relevant situation is to consider the applied force to be white noise Ni(t).

In our system that could be random collisions due to gas molecules which

perturb the motion of the particle. In this case we know that

�Ni(t)Nj(t
′
)� = SNi�ij�(t − t

′
) (2.17)

where SNi is the Noise PSD. We can then show that the displacement PSD

simplifies to

Sxx =
��m(!)�

2

m2
�

i

SNi . (2.18)

We can then consider the total power in the spectrum due to these noise

terms. In this case we can relate the total power to a temperature of the
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2.2. Optomechanics

Figure 2.5: The displacement power spectral density from Equation
2.18. The curve takes the form of a Breit-Wigner distribution.

motion due to the noise as

�

∞
−∞ Sxx(!)d! =

∑i SNi

m2

⇡

�⌦2
x
= 2⇡

kBT

m⌦2
x
. (2.19)

In other words

�

i

SNi = 2�mkBT (2.20)

which makes clear the connection between the driving strength of the white

noise and the damping as follows from the Fluctuation Dissipation theorem.

With this we can model the shape of the PSD for our typical regimes

which is shown in Figure 2.5. In the experiment, we can measure the position

of the oscillator as a function of time and use that to compute the PSD and

retrieve the damping rate instead of calculating it from first principles.

2.2.2 The Thermal Mechanical Oscillator in Quantum

Mechanics

The Langevin equations we built previously were done without respecting

the commutation relation between x and p. To create a quantum model,

we will take the Caldeira-Leggett model of dissipation [41]. This model
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2.2. Optomechanics

describes the environment as a bath composed of an infinite number of

harmonic oscillators. We can then write our Hamiltonian as

Ĥmech =
p̂
2

2m
+
1

2
m⌦2

xx̂
2
+�

i

p̂
2

i

2mi
+�

i

1

2

C
2

i

mi⌦2

i

�x̂ −
mi⌦

2

i

Ci
x̂i�

2

(2.21)

where x̂i, p̂i, Ci, mi, and ⌦i, are the position, momenta, coupling constants,

masses and oscillator frequencies of the bath operators. We can then derive

the equations of motion for our operators

dx̂

dt
=

p̂

m
, (2.22)

dp̂

dt
= −m⌦2

xx̂ −�
i

C
2

i

mi⌦2

i

�x̂ −
mi⌦

2

i

Ci
x̂i� , (2.23)

dx̂i

dt
=

p̂i

mi
, (2.24)

dp̂i

dt
= Ci �x̂ −

mi⌦
2

i

Ci
x̂i� . (2.25)

We can put these together to get

0 =m¨̂x +m⌦2

xx̂ +�
i

C
2

i

mi⌦2

i

x̂ −Cix̂i, (2.26)

0 =mi
¨̂xi +mi⌦

2

i x̂i −Cix̂. (2.27)

We can solve Equation 2.27 to get

x̂i(t) = x̂
(0)
i (t) +

Ci

mi⌦2

i

�x̂(t) −
d

dt
�

t

−∞ cos(⌦i(t − t
′
))x̂(t

′
)dt
′
� , (2.28)

where we have introduced

x̂
(0)
i (t) = x̂i(0) cos(⌦it) +

p̂i(0)

mi⌦i
sin(⌦it) (2.29)
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for ease of use. This allows us to more succinctly write our equation of

motion for x(t) as

F (t) =m¨̂x +m⌦′x2x̂ + kbathx̂ +�
t

−∞ �(t − t
′
) ˙̂x(t′)dt′, (2.30)

where we have defined F (t) = ∑iCix̂
(0)
i (t), ⌦

′
x
2
= ⌦2

x + kbath�m, kbath is the

average of ki, and �(t) is our now time dependent damping term. If we

make the first Markov approximation [42] �(t) = ��(t), then we recover the

classical form for the oscillator

F (t) =m¨̂x +m⌦′x2x̂ + � ˙̂x, (2.31)

albeit with a modified frequency. This approximation removes any memory

in the bath which results in our white-noise process as expected. We can

also look at correlations in the force term which have been shown [43, 44]

to be

1

2
�F (t)F (t

′
) + F (t

′
)F (t)� =

m�

⇡
�

∞
0

d!�h! coth�
�h!

2kBTbath

� cos(!(t − t′)),
(2.32)

=m�kBT
d

dt
coth�

⇡kBTbath(t − t
′
)

�h
� (2.33)

which in the classical limit of �h→ 0 simplifies to

1

2
�F (t)F (t

′
) + F (t

′
)F (t)� = 2m�kBTbath�(t − t

′
), (2.34)

which is inline with the classical case.

We can analogously calculate Sxx(!) in the quantum regime, however

we will look at the more general PSD SxNxN (!) for arbitrary powers of x.

This has been calculated [45] to be

SxNxN (!) = �x
2N
zpf

�N�2�
�

i=0
N−2i
�

j=0
N↵

(N)
ij (2 �n� + 1)

2i
(�n� + 1)N−2i−j �n�j

[! − (N − 2i − 2j)⌦′x]2 + �N �
2
�
2

(2.35)
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where xzpf =

�
�h�2m⌦′x is the zero point fluctuation of this oscillator, �n� =

1

e
�h⌦′x�kBT−1 is the coherent amplitude of the motional state, and

↵
(N)
ij =

1

22ij!(N − 2i − j)!

(N !)2

(i!)2
. (2.36)

These higher order motions can appear in detection and we can recover

Sxx(!), which takes the simple form of

Sxx(!) = �x
2

zpf

�
�
�
�
�
�

�n� + 1

(! −⌦′x)2 + ��2�2
+

�n�

(! +⌦′x)2 + ��2�2
�
�
�
�
�
�

. (2.37)

Note that in the high temperature limit we recover the spectrum of the

classical thermal mechanical oscillator in Equation 2.18.

2.2.3 Phononic Representation

It is often more favourable to work in the phononic basis of a harmonic

oscillator, especially when looking at quantum behaviour. To that end, we

will introduce the creation and annihilation operators b̂
† and b̂ of phonons

of the particle’s motion with

x̂ = xzpf �b̂
†
+ b̂� , (2.38)

p̂ =
i�h

2xzpf
�b̂

†
− b̂� , (2.39)

[b̂, b̂
†
] = 1. (2.40)

It is then natural to work in the basis of Fock states with

b̂ �n� =
√
n �n − 1� , (2.41)

b̂
†
�n� =

√
n + 1 �n + 1� , (2.42)

�⇒ n̂ = b̂
†
b̂ �n� = n �n� . (2.43)

Given that these phonons are bosons, we know that in thermal equilibrium
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2.3. Heating Rates and Dissipation

they follow Bose-Einstein statistics which means

n̄ = �n̂� =
1

e−�h⌦′x�kBT − 1
. (2.44)

This allows us to better understand the phononic occupation in Equations

2.35 and 2.37.

The connection between the displacement PSD and the phononic occu-

pation provides an opportunity to do so-called Raman sideband asymmetry

thermometry[46]. From Equation 2.37 we can see that the ratio of sideband

heights gives us a measure of the phononic occupation. More robust to noise

would be to integrate Sxx(!) around ±⌦
′
x instead of just the peak heights

but the logic remains the same. This will be explored more in Chapter 6.

Working in this basis, one can show [47] that the transition rates between

phonon occupations due to a linear force can be written as

�n→n+1 = (n + 1)�↑ = (n + 1)
x
2

zpf

�h2
SFF (−⌦

′
x), (2.45)

�n→n−1 = n�↓ = n
x
2

zpf

�h2
SFF (⌦

′
x). (2.46)

and then the dissipation rate is � = �↓−�↑. That is, the increase and decrease

of the particle’s motion is linked spectroscopically with the noise. Following

[48], for some out of equilibrium state with occupation n̄, the corresponding

equation of motion for the occupation is

˙̄n = � − �n̄ (2.47)

where we identify � as our heating rate.

2.3 Heating Rates and Dissipation

One of the advantages a levitated optomechanical system has over a tethered

system is its isolation from environmental noise and the absence of dissipa-

tion due to intrinsic losses in the material. However, there are still some

channels by which noise can couple to the oscillator. We will outline a num-
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2.3. Heating Rates and Dissipation

ber of relevant noise sources and how they impact the phononic occupation

of the oscillator.

2.3.1 Background Gas Collisions

A common realisation of the aforementioned damping or white noise force

would be the random collisions of gas molecules with the oscillator. These

collisions give rise to the well known Brownian motion we previously ana-

lyzed. To proceed, let us again assume our oscillator is a spherical particle

of radius r. We can assume the collisions are isotropic in a standard vacuum

chamber environment. For low pressures, (P < 10mbar), it has been shown

[19] that the gas damping can be approximated by

�bath =
16

⇡

P

v̄gas⇢r
(2.48)

where v̄gas is the average speed of the background gas, and ⇢ is the density

of the oscillator. Following [49], the velocity distribution of a gas is well

described by the Maxwell-Boltzmann distribution

dn

dv
=

1
√
2⇡
�
mgas

kTgas

�

3

2

v
2
e
− mgasv

2

2kBTgas (2.49)

where dn�dv is the relative number of particles with velocities between v

and v + dv, m is the mass of the gas particles, and T is their temperature.

The mean velocity of this distribution is v̄gas =
�
8kBTgas�⇡mgas. Note

the dependence on the molecular mass in which case our background gas

composition can significantly change our damping. In particular if the gas

is predominantly hydrogen, as is often the case in high-vacuum systems, we

would have a gas damping rate of �bath�2⇡ ∼ 10
2Hz while if the makeup is

air the damping would be �bath�2⇡ ∼ 103Hz, both at nominal pressure of

1mbar and room temperature.

Following the calculation of Equation 2.47, for this white noise force we

get

˙̄n = �bath (n̄bath − n̄) (2.50)
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where n̄bath is the occupation of the bath. For a room temperature envi-

ronment this is simply n̄bath =
kBTroom�h⌦′x . This describes the heating of the

oscillator until it is in thermal equilibrium with the bath. We can then

identify our heating rate due to the bath as �bath = �bathn̄bath. At the base

pressure of our system, substituting in Equation 2.48 for �bath, we find that

�bath�2⇡ ∼ 10
3Hz at standard operating parameters [50]. More sophisticated

models of gas damping have been investigated in the context of levitated op-

tomechanics [34] and provide some corrections to this estimate which take

into account the internal temperature of the levitated nanoparticle.

2.3.2 Intensity Noise

Additional heating e↵ects come from fluctuations in the trapping potential.

Until now, we have considered a static harmonic potential which has removed

many physical mechanisms. Variations in the harmonic potential strength

can cause heating.

The e↵ect of classical intensity noise on the trapping potential can be

modeled as a time dependent shift in the mechanical frequency ⌦2
x → ⌦2

x(1+

✏(t)) which gives rise to a forcing term in our equation of motion propor-

tional to x. It has then been shown [51] that this would give rise to an

equation of motion for the occupation as

˙̄n =
�RIN

2
+ �RINn̄ (2.51)

where

�RIN =
⇡

2
⌦2

xSRIN(2⌦x) (2.52)

where SRIN is the PSD of the residual intensity noise (RIN). Note then

in this case, �RIN acts to amplify motion while �bath dampens the motion.

Also, the fact that we are interested in the spectrum of the noise at twice

the mechanical frequency is because this is equivalent to a parametric drive.

We identify �RIN = �RIN�2 as the heating contribution and for standard

operation parameters and SRIN(2⌦x) ≈ −130dB�Hz, this comes out to be

�RIN�2⇡ ∼ 10−4Hz. While the heating may be small for most cases, the
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amplification e↵ect can be strong.

2.3.3 Trap Shaking

Alternative to intensity noise is the center of the harmonic potential moving.

This could be due to beam stearing or other vibrations in the environment

coupling into our system. For positioning noise, we take x(t) → x(t) − ✏(t),

in which case ˙̄n = �pos where

�pos =
⇡

2

m⌦3
x
�h

Spos(⌦x). (2.53)

Note that there is no damping associated with the movement of the potential

center. Accurately measuring our Spos is di�cult in our experimental setup

but given our results in Chapter 6, we can estimate it to be < 10−15dB�Hz
based on [52].

2.3.4 Photon Recoil

The generation of the optical potential is done, in our case, through the use

of an optical tweezer discussed in Chapter 5. Taking a more detailed look,

beyond modeling it as just a harmonic potential, we see that the scatter

of photons o↵ of the particle can also heat the particle motion due to shot

noise. To a good approximation, this coupling is independent of position

(since the particle is localized in the optical field) but provides a momentum

impulse and thus is a contribution to F (t). The PSD of the force due to the

recoil of scattered photons is

S
(rec)
FF =

�h!light

c2
Pscatt(✓,�) (2.54)

where Pscatt(✓,�) is the component of the total power scattered along some

direction r̂✓,� = (cos ✓, sin ✓ cos�, sin ✓ sin�) with the dipole aligned to (1,0,0).
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In this case, for a radiating dipole,

Pscatt(✓,�) = �

2⇡

0
�

⇡

0

3

8⇡
P

total

scatt sin
2
✓
′
(r̂✓′,�′ ⋅ r̂✓,�)2 sin ✓′d✓′d�′ (2.55)

=
P

total
scatt

5
��1,
√
2,
√
2� ⋅ r̂✓,��

2

. (2.56)

where P
total
scatt = �scattI with I and �scatt is the scattering cross-section. The

scattering cross-section is given by

�
total

scatt =
1

6⇡

�↵�
2
k
4

✏
2

0

(2.57)

where ↵ = 4⇡✏0r
3 n2−1
n2+1 , and k is the wavevector of the impinging light, r is

the particle radius and n is its index of refraction. If we take the dipole to

be oriented along the y-direction then P
(y)
scatt
=

1

5
P

total
scatt , and P

(x)
scatt
= P

(z)
scatt
=

2

5
P

total
scatt . From [47], we know that

˙̄n =
1

2m�h⌦x
S̄FF (⌦x) =

1

5

�scattI

mc2

!light

⌦x
= �scatt. (2.58)

where S̄FF (⌦x) =
SFF (⌦x)+SFF (−⌦x)

2
. Note that for heating along the axes

perpindicular to the dipole axis, the heating rate is twice this value. Typi-

cally, we operate with I ∼ 1011W�m2, which gives a heating rate of �scatt�2⇡ ∼

103Hz.

2.3.5 Black Body Radiation

Besides scattering, the particle can also absorb light, both from the tweezer

and from the environment. The former can heat up the particle causing

substantial blackbody emission which will also cause heating of the motion

while the latter can act just like the scattering force and cause heating.

These blackbody terms are not well known for our system. For bulk systems
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[53], the blackbody localization parameters are

⇤bb, scatt =
8!8⇣(9)⇡1�3

9
Re�

✏bb − 1

✏bb + 2
�

2

cr
6
�
kBTe
�hc
�

9

, (2.59)

⇤bb, abs(em) =
16⇡6

⇡
1�3

189
Im�

✏bb − 1

✏bb + 2
� cr

3
�
kBTe(i)
�hc

�

6

, (2.60)

where �th is the wavelength of the thermal photons which is roughly ∼ 1mm

for our operating temperatures, ✏bb = 2.1+i0.57 and Te(i) are the environment

(internal) temperatures. We can relate these localization parameters to the

heating rate through � = ⇤x2
zpf

. Its been shown that particles can heat

up to ∼ 103K [34] which gives �bb, scatt�2⇡ ∼ 10−9,�bb, abs�2⇡ ∼ 10−6, and
�bb, em�2⇡ ∼ 10

−3 in a room temperature environment. These are negligible

then compared to other heating rates in our system except under freefall

conditions in UHV. This will be discussed in more detail later.

One should note however that the usage of bulk expressions has been

shown to poorly model the behaviour of some microscopic systems [54]. In

our current pressure regimes, our heating is well described by the dominant

gas and recoil terms. In the future when the system can reach UHV we

will be able to investigate the true impact of black-body radiation on the

system.
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Chapter 3

Optical Cavities

We will now give a short overview of the relevant physics of optical cavi-

ties. We will start with building our intuition and understanding through a

classical picture before considering our cavity in a quantum formalism. The

apparatus we will consider is shown in Figure 3.1.

3.1 Classical Optical Modes

There are many forms of optical cavity which can broadly be classified into

travelling and standing wave resonators. We will focus exclusively on the

latter but many of the same insights can be applied to travelling wave res-

onators. In the case of standing wave resonators, the round trip accumulated

phase inside the resonator sets a condition on the allowed frequency of light

through interference. This leads to the definition of the Free Spectral Range

(FSR)

!FSR =
2⇡c

2nL
(3.1)

where c is the speed of light vacuum, n is the refractive index of the medium

in which the light travels and L is the path length of the resonator. We can

then define the Finesse as

F =
⇡

�

�r�

1 − �r�
(3.2)

where �r� =
√
R1R2e

−↵sL is the complex round-trip attenuation factor with

R1,2 the mirror reflectances and ↵s is the coe�cient of loss associated with

absorption and scattering within the cavity and not transmission through

the mirrors. The finesse e↵ectively quantifies the losses in the system in

which case a lossless system would take F →∞ as �R1,2�→ 1. This can then
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3.1. Classical Optical Modes

Figure 3.1: A sketch of a cavity system. A cavity mode (blue) exists
within an optical cavity. The light can transmit through one of the cav-
ity mirrors and subsequently be used to detect the cavity mode. In this
dissertation, the cavity is placed inside of a vacuum chamber.
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3.1. Classical Optical Modes

be related to the spectral linewidth on the resonator  ≈ !FSR�F . This is of-

tentimes referred to as the energy decay rate as it quantifies the exponential

decay of the energy of the light accumulated inside of the resonator.

If we then consider the resonator in 3D space, the spatial modes of the

cavity can be decomposed into Hermite-Gaussian modes. In this case, we

have to modify the frequency spacing to account for the spatial variation in

the phase. For a frequency or longitudinal mode q and Hermite-Gauss mode

(l,m) we have a frequency of

!q,l,m = !FSRq + (l +m + 1)
�⇣

⇡
!FSR (3.3)

where �⇣ = ⇣(z2) − ⇣(z1) is the di↵erence in Guoy phase at the two mirror

surfaces. Alternatively, we can make the connection to the geometry of the

cavity more evident by writing this as �⇣ = cos−1(g1g2) where the so-called

g-parameters are defined as gi = 1+L�Ri where Ri is the radius of curvature

of the mirror. For reference, a near-confocal cavity has gi ≈ 0 in which case

!
(Near−Confocal)
q,l,m ≈ !FSR �q +

l +m + 1

2
� (3.4)

with a mode structure depicted in Figure 3.2. We have assumed here that

the cavity is cylindrically symmetric and therefore !q,l,m = !q,m,l but this is

not in general true. In that case, one would need to use di↵erent radii of

curvature for the di↵erent axes to compute the resonance conditions. It’s

also possible that the mirrors are not symmetric in size along the di↵erent

axes which can also have an e↵ect.

Furthermore, if the cavity mirrors have some birerefringence, the dege-

naracy of polarization modes can in-principle be lifted. A phase di↵erence

can be thought of as a path di↵erence length di↵erence, leading to di↵erent

frequency modes. These shifts are usually small compared to !FSR but can

be large relative to the cavity linewidth in which case they are resolvable.

As the name implies, these standing wave resonators have a standing
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3.1. Classical Optical Modes

Figure 3.2: The cavity mode structure of a near-confocal cavity.
The Hermite-Gauss modes split into group where l+m is even and odd with
the spacin between these groups being ∼ !FSR�2. Within the groups, the
di↵erent values of l +m again split with a finer mode spacing.

wave intensity profile. For a symmetric cavity this simplifies to

I(x, y, z) = 2�E0�
2 W

2

0

W (z)2
e
−2 x2+y2

W (z)2 �Hl �

√
2x

W (z)
�Hm �

√
2y

W (z)
��

2

× �1 + cos�2kz + k
x
2
+ y

2

R(z)
− 2(l +m +m)⇣(z)�� (3.5)

(3.6)

where W0 is the beam waist, W (z) is the beam size as a function of position

along the cavity axis, Hi is the i
th Hermite polynomial and R(z) is the radius

of curvature of the wavefront. One can in-principle determine the power of

the intracavity field stemming from some external drive based o↵ of the

specifications of the cavity reflectances and the mode matching between the

drive field and the cavity mode.

A final set of useful quantities are the cavity mode volume Vcav and

the cavity quality factor Qcav. These can be thought of as quantifying the

spatial and temporal confinement of the light in the cavity respectively. The
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3.2. Quantum Optical Modes

mode volume was introduced by Purcell [1] and we define it as

Vcav = �
V

I(�x)

Imax

d
3
x, (3.7)

where Imax is the maximum intensity in the cavity. One can show that with

a gaussian mode, we find that Vcav ≈
⇡
4
Lw

2

0
. The quality factor relates the

energy stored inside the resonator to the energy dissipated per oscillatory

cycle. This can be quantified as

Qcav(!) =
!


≈

!

!FSR

F . (3.8)

This is inline with our definition of the quality factor for a mechanical os-

cillator in Chapter 2.

3.2 Quantum Optical Modes

In second quantization, the complex electric field amplitude �Ecav for a cavity

oriented along the x−direction is given by

�Ecav(�x) = E
(cav)
0

✏̂cav
1

qcav(x)
cos(kcavx)e

−ikcav y2+z2
2qcav(x) â (3.9)

where E
(cav)
0

=

� �h!cav
2✏0Vcav

, ✏̂cav is the unit vector defining the field polariza-

tion, qcav(x) is the complex gaussian beam parameter, and kcav =
!cav

c is the

wavenumber for the specific cavity mode with field creation and annihila-

tion operators â and â
† with the relation [â, â†

] = 1. We will then consider

external mode operators ĉ(!) and ĉ
†
(!) (with [ĉ(!), ĉ†(!′)] = �(! − !

′
))

that couple to this cavity. Following [55] we can describe such a system by

the Hamiltonian

Ĥcav =
�h!cavâ

†
â +�

∞
−∞ d!�h!ĉ

†
(!)ĉ(!) + i�h�

∞
−∞ d!g(!) �ĉ

†
(!)â − â

†
ĉ(!)�

(3.10)

where g(!) describes the coupling of the cavity to the environment. One

can show that the Heisenberg equation of motion for the external operators
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3.2. Quantum Optical Modes

are
˙̂c(!) = −i!ĉ(!) + âg(!). (3.11)

the solution to which is

ĉ(!) = e
−i!(t−t0)ĉ0(!) + g(!)�

t

t0
e
−i!(t−t′)

â(t
′
)dt
′ (3.12)

where ĉ0(!) = ĉ(!)�t=t0 where t0 is some initial time before t. Alternatively,

we can write a time reversed solution

ĉ(!) = e
−i!(t−tf )ĉf(!) − g(!)�

tf

t
e
−i!(t−t′)

â(t
′
)dt
′ (3.13)

where ĉf(!) = ĉ(!)�t=tf where tf is some time later than t. To maintain

normal ordering with respect to creation and annihilation operators, we can

rewrite our Hamiltonian in terms of these forwards and backwards propa-

gating solutions. It will help to make the first Markov approximation by

assuming g(!) =

�

�2⇡ for all frequencies of interest. Focusing on the

interaction term, we get that

ĤInt = i
�h�

∞
−∞ d!g(!) �ĉ

†
(!)â − â

†
ĉ(!)� (3.14)

= i�h �
√
 �â

†
Out

â + â
†
âIn� − n̂� (3.15)

where we have defined

âIn(t) = −
1
√
2⇡
�

∞
−∞ d!e

−i!(t−t0)ĉ0(!), (3.16)

âOut(t) = +
1
√
2⇡
�

∞
−∞ d!e

−i!(t−tf )ĉf(!). (3.17)

We can relate the definitions of âIn(t) and âOut(t) through

1
√
2⇡
�

∞
−∞ ĉ(!)d! = −âIn(t) +

√


2
â(t) = âOut(t) −

√


2
â(t), (3.18)

�⇒
√
â(t) = âOut(t) + âIn(t). (3.19)
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3.2. Quantum Optical Modes

Next, using this relation we can construct the commutators between some

system observable X̂(t) and âIn(t) and âOut(t). Observe that

�X(t), âIn(t
′
)� = u(t − t

′
)
√
 �X(t), â(t

′
)� (3.20)

�X(t), âOut(t
′
)� = u(t

′
− t)
√
 �X(t), â(t

′
)� (3.21)

where

u(t) =

�
�����
�
�����
�

0 t < 0
1

2
t = 0

1 t > 0

(3.22)

We are now equipped to look at the equation of motion for our system

operators. We will start by looking at the equation of motion of the cavity

occupation n̂ = â
†
â. Observe that

˙̂n = −
i

�h
�n̂, Ĥcav� = −

i

�h
�n̂, i�h

√
 �â

†
Out

â + â
†
âIn�� (3.23)

=
√
 �â

†
âIn − â

†
Out

â� . (3.24)

We can now ascribe physical meaning to the di↵erent terms in our conve-

niently labelled Hamiltonian. We can intuitively read the first term as anni-

hilating a photon from the external modes before time t and then creating a

photon inside the cavity while the second term means to annihilate a photon

from inside the cavity at time t and creating one outside at some later time.

We see that âIn(t) and âOut(t) represent the incoming and outgoing fields

from the cavity and  is the classical energy decay rate mentioned previ-

ously. If the driving term âIn(t) is dropped then we recover the exponential

decay of the cavity occupation n̂ = n0es
−t which matches the classical case

as our intuition would suggest.

For completeness, we note that for a double-sided cavity we can’t just

substitute  = 1 + 2 but rather introduce an additional environment term

for each output leading to a multiplication of all coupling terms.

From this physical connection, we can think about restructuring our

Hamiltonian into something that more clearly represents our experiment of

interest. In particular, we want to consider a situation where we are driving
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3.2. Quantum Optical Modes

the cavity with some coherent field at frequency !d. This is equivalent to

applying the displacement operator D̂(↵(t)) to our Hamiltonian. Specifi-

cally,

D̂(↵(t)) = e
↵In(t)ĉ†(!d)−↵∗In(t)ĉ(!d) (3.25)

where ↵In(t) = �↵In�e
−i(!dt+�). This results in a Hamiltonian

Ĥcav →
�h!cavâ

†
â+�

∞
−∞ d!�h!ĉ

†
(!)ĉ(!)+i�h

√
(â

†
âIn−â

†
In
â)+i�hEd(e

−i(!dt+�)â†
−e

i(!dt+�)â)
(3.26)

where Ed =
�


2⇡ �↵In�. From our classical understanding of cavities, we can

identify that �↵In� =

�

Pin�
�h!d with units of

�

photons�s. Switching to the

interaction picture by rotating at the drive frequency through the unitary

Û(t) = e
i!dt�â†â+∫ ∞−∞ d!ĉ†(!)ĉ(!)� (3.27)

puts our Hamiltonian in the final form

Ĥ
(rot.)

cav = �h�â
†
â+�

∞
−∞ d!�h(!−!d)ĉ

†
(!)ĉ(!)+i�h

√
(â

†
âIn−â

†
In
â)+i�hEd(e

−i�
â

†
−e

i�
â)

(3.28)

where � = !cav − !d. In this picture, we can clearly identify the di↵erent

e↵ects. The last term is for the classical cavity drive component while the

second last term is the coupling of fluctuations.

We can now return to our internal mode operators and we can quickly

see that

˙̂a = −
i

�h
�â, Ĥ

(rot.)
cav � = −i� �â, â

†
â� +Ede

−i�
�â, â

†
� +
√
 ��â, â

†
� âIn − �â, â

†
In
� â�

(3.29)

= −i�â +Ede
−i�
+
√
âIn −



2
â, (3.30)

�⇒ ↵0 ≡ �â� =
Ede

−i�

2
+ i�

. (3.31)
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3.2. Quantum Optical Modes

In steady-state, one can then show that the cavity occupation is

�n̂� = �↵0�
2
=

E
2

d

�2 + �

2
�
2

(3.32)

which relates the number of photons inside of the cavity to the amplitude of

the drive. We can then choose the phase of the drive � such that ↵0 is real.

Let us now displace the cavity field by the amplitude found in Equation

3.31 which results in

Ĥcav →
�h�â

†
â +�

∞
−∞ d!�h(! − !d)ĉ

†
(!)ĉ(!) + i�h

√
(â

†
âIn − â

†
In
â) + i�hEd(e

−i�
â

†
− e

i�
â)

− i�h
√
↵0 �â

†
In
− âIn� +

�h� ��↵0�
2
+ ↵0â + ↵0â

†
� . (3.33)

from which we can get the Langevin equation for our cavity operator

˙̂a = �


2
− i�� â +

√
âin. (3.34)

3.2.1 Relation to Caldeira-Legget

It is worth noting that the above relation is equivalent to that of the me-

chanical oscillator discussed in Chapter 2. Despite approaching the problem

of dissipative systems from two di↵erent perspectives we have arrived at the

same governing dynamics and Hamiltonian structure. This symmetry be-

tween the mechanical and optical subsystems will be exploited in Chapter 4

to simplify computations. This is a unique aspect of cavity optomechanics

when compared with other quantum devices that rely on internal degrees of

freedom with non-linearities.
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Chapter 4

Levitated Cavity

Optomechanics

We proceed by exploring the dynamics of a mechanical oscillator coupled

to an optical cavity as illustrated in Figure 4.1. To do so, we will start

with a simple generic linear coupling before demonstrating two mechanisms

through which we realize this coupling in our experiment. Specifically, we

will discuss a dispersive coupling mechanism which plays a small but critical

role in our experiment before examining coupling via coherent scattering

which is how we typically couple the particle to the cavity. As before,

we will end with an outline of which noise sources need to be additionally

considered in each case and how they impact our mechanical oscillator.

4.1 Linear Coupling

A simple model for a linear coupling between our mechanical oscillator and

optical cavity can take the general form

Ĥlinear = g(b̂ + b̂
†
)(â + â

†
). (4.1)

Adding this coupling to our previous mechanical and optical Hamiltonians

leads to the following Langevin equations

˙̂a ≈ −�


2
+ i�′� â +√âIn − ig �b̂ + b̂†� (4.2)

˙̂
b ≈ −�

�

2
+ i⌦′x� b̂ +√�b̂In − ig �â + â†

� (4.3)
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4.1. Linear Coupling

Figure 4.1: A diagram of a general levitated cavity optomechanics
setup. (a) The combination of the levitated optomechanics and cavity se-
tups we discussed in the previous chapters. The particle experiences both the
tweezer (red) and cavity fields (blue). (b) Because the particle is generally
positioned at the tweezer focus, its mean position �x0 can be tuned relative
to the cavity mode (dashed). (c) As previously discussed, the tweezer po-
larization can be tuned which modifies both the trap geometry as well as
the dipole scattering orientation. The scatter happens orthogonal to the
tweezer polarization and we set the overlap of the polarization of the cavity
and the tweezer fields to be �✏̂tw ⋅ ✏̂

∗
cav� ≈ cos ✓.
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4.1. Linear Coupling

where we have switched to an input-output formalism for the mechanics

after we showed this gives rise to an analogous description of the dynamics.

We can easily solve these coupled Langevin equations in the Fourier

domain whereby we can encode this system of equations into the matrix

form

�

�
�
�
�
�

�

√
�l(!)ãIn(!)

√
�
∗
l (−!)ã

†
In
(!)

√
��m(!)b̃In(!)

√
��
∗
m(−!)b̃

†
In
(!)

�

�
�
�
�
�

�

=

�

�
�
�
�
�

�

1 0 ig�l(!) ig�l(!)

0 1 −ig�
∗
l (!) −ig�

∗
l (−!)

ig�m(!) ig�m(!) 1 0

−ig�
∗
m(−!) −ig�

∗
m(−!) 0 1

�

�
�
�
�
�

�

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
M(!)

�

�
�
�
�
�

�

ã(!)

ã
†
(!)

b̃(!)

b̃
†
(!)

�

�
�
�
�
�

�

.

(4.4)

where

�l(!) =
1


2
− i(! −�)

(4.5)

�m(!) =
1

�
2
− i(! −⌦)

(4.6)

are the optical and mechanical susceptibilities respectively2. We can solve

this set of equations by inverting this matrix3. Using the solutions, we can

calculate the PSD of the mechanical motion

Sxx(!) = x
2

zpf �⌫(!)�
2
����m(!)�

2
(N̄ + 1) + ���m(−!)�

2
N̄ + g

2
��l(!)�

2
��m(!) − �

∗
m(−!)�

2
�

(4.7)

where

⌫(!) =
1

1 + g2(�l(!) − �
∗
l (−!))(�m(!) − �

∗
m(−!))

. (4.8)

An analogous result can be found for the intra-cavity field since the system

2This redefinition of the mechanical susceptibility is more convenient when working
with b̂ and b̂† and one could work with x̂ and the old definition of mechanical susceptibility.
The additional benefit here is the symmetry of the problem and solution which is rather
elegant.

3The full calculation can be found in Appendix C.
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4.2. Dispersive Coupling

is symmetric. Note that the first two terms in Equation 4.7 correspond

to the uncoupled mechanical oscillator solution in Equation 2.37 and it is

only the final term and the modulation ⌫(!) which modify the spectra. We

will explore how the spectra looks for the di↵erent coupling regimes in later

chapters. We simply note here that at high temperatures, the g
2 term can

be neglected since N is large and ⌫(!) governs all of the coupling behaviour.

4.1.1 Optomechanical Cooperativity

We can then define the optomechanical cooperativity as the ratio between

the heating rate associated with the cavity mode fluctuations and the heating

rate from all other sources. This can then be written as

C =
�shot

∑i �i
≈

4g2



∑i �i
. (4.9)

This quantifies the ability of the system to demonstrate quantum features.

One example we will see in Chapter 6 is that the minimum phonon number

depends on the cooperativity and in fact our oscillator requires C > 1 to

reach ground state.

4.2 Dispersive Coupling

A common way of coupling a mechanical oscillator to an optical cavity is

dispersively4. In this case, the particle motion causes position dependent

phase modulation to the cavity field, imprinting the motion on the optical

mode. The mechanical oscillator is, in the context of this dissertation, a

nanoparticle trapped in an optical tweezer, positioned near the waist of

a given cavity mode which is driven externally. In this case, due to the

di↵erence in the index of refraction of the particle and the medium inside

the optical cavity, usually air, light propagating through the nanoparticle

4Historically, this started with tethered oscillators which cannot reasonably be coupled
via coherent scattering as we will see later.
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4.2. Dispersive Coupling

can experience a phase delay. It has been shown [19, 56] that this is

�!

!
= −

1

2✏0

∫ d
3
r
′
� �P (�r′) ⋅ �E(�r′)

∫ d
3r′ � �E(�r′)�2

, (4.10)

≈ −
U0

!
f(y, z) cos2 kx̂ (4.11)

where � �P (�r′) is the change in permittivity due to the polarizability of the

dielectric object ↵ind, U0 = ↵ind�2✏0Vcav is the bare shift in the cavity fre-

quency and f(y, z) quantifies the relative change in intensity away from the

central intensity, i.e. at the position of the cavity waist for a gaussian mode,

f(�r) = 1. Note that we have chosen to use a longitudinal mode with an

intensity maximum at the beam waist where �x̂� = 0. One can alternatively

switch to a mode with an intensity minimum at the beam waist in which

case we take cos2(kx)→ sin2(kx) in the above expression.

Given this, we can write the dispersive term for our coupled Hamiltonian

as

Ĥdisp =
�h�!(�r)â

†
â→ −�hU0f(y0, z0) cos

2
(k(x0+x̂)) �â

†
â + ↵0â + ↵0â

†
+ �↵0�

2
�

(4.12)

where we have applied the same displacement and rotation operators as in

the cavity system as well as the analogous displacement of the position of

the oscillator x̂ → x0 + x̂. We can linearize this interaction by expanding in

powers of x̂. Then

Ĥdisp ≈ −
�hU0f(y0, z0) cos

2
(kx0) �â

†
+ ↵0� (â + ↵0)

+ �hg �b̂ + b̂
†
�

+ �hg0 �b̂ + b̂
†
� â

†
â

+ �hg �b̂ + b̂
†
� �â + â

†
� (4.13)

where

g = g0↵0 =
1

2

↵ind

✏0Vcav

kxzpff(y0, z0) sin(2kx0)↵0 (4.14)

38



4.3. Coherent Scattering

is the total coupling rate while g0 is the single photon coupling rate. The first

term in Equation 4.13 is a shift in the cavity frequency due to the presence

of the particle, the second term is a shift in the mean position of the particle,

the third term is a single photon interaction term which is usually too weak

to be of much consequence and the final term is our linear coupling. The

shift of the cavity frequency and oscillator position can be compensated and

therefore will not be of importance to us as proceed. Additionally, we will

assume the coherent amplitude of the cavity is large enough that we can

neglect the â†
â. Then our dispersive coupling takes the same linear form we

discussed previously

Ĥdisp ≈
�hg �b̂ + b̂

†
� �â + â

†
� . (4.15)

Although this can be compensated for, our g has implicitly become detuning

dependent since �↵0�
2
=

E2

d

�2+(�2)2 . In other words, if we keep the drive

amplitude fixed, changing the detuning changes the amount of light coupled

into the cavity which changes the coupling rate to the particle. One can

modify Ed to account for this so our limits are still the same but this may

not always be feasible.

4.3 Coherent Scattering

An alternative scheme to dispersively coupling the particle to the cavity, by

driving the cavity through one of its mirrors, is to drive the cavity through

the scatter o↵ of the nanoparticle itself. This so-called coherent scatter-

ing scheme has been explored in the context of ultracold atomic systems

[57, 58] and more recently in levitated optomechanics [16, 17]. It serves a

fundamental role in our experiment as it o↵ers some key improvements when

compared with dispersive coupling as we will see.

To start, let us consider the Hamiltonian for such a case. We can write
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4.3. Coherent Scattering

down such an interaction through a dipole interaction as

Ĥdip = −
1

2
↵ind�

�E(�x)�
2
= −

1

2
↵ind�

�Etw(�x) +
�Ecav(�x)�

2 (4.16)

= −
1

2
↵ind ��

�Etw(�x)�
2
+ � �Ecav(�x)�

2
� −

1

2
↵ind
�Etw(�x) ⋅

�E
†
cav(�x) + c.c. (4.17)

where the first and second terms give rise to the harmonic potential and

dispersive coupling respectively. We will call the final terms ĤCS as we will

see they give rise to our coherent scattering interaction as the particle couples

the fields of the tweezer and the cavity together. This Hamiltonian has been

described in our system previously [16] but here we will take a slightly

di↵erent approach to keep with the consistent input-output formalism we

have thus far maintained.

Focusing on the interaction terms, we will make the simplifying assump-

tion that the tweezer is a classical field, which amounts to the same ap-

proximations we have made before by taking the coherent amplitude to be

large and thus dominate the interaction over the vacuum term. This is an

especially good assumption in this case as the tweezer generally operates

well above the single photon regime. Since the tweezer is generally not

cylindrically symmetric, one can use the elliptical form of a gaussian beam

[59]

�Etw(�x) = E
(tw)
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�
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−iktwz−i!twt−iktw� x2
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�Ecav(�x) = E
(cav)
0

✏̂cav
1

qcav(x)
cos(kcavx)e

−ikcav y2+z2
2qcav(x) â (4.19)

where qi,j is the complex beam parameter for beam i along axis j and ✏i

is the polarization vector. We should note that the frames of reference for

the standard form of the tweezer and cavity mode may not agree5. Let us

assume that the nanoparticle is trapped close to the tweezer beam waist

5As is the case in our experiment where the polarization and alignment of the tweezer
to the cavity is not perfect.
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and set the displacement from this position to 0. We can then relate the

coordinate system of the tweezer �xtw to that of the cavity �xcav through a

rotation matrix R(✓,�) and some displacement �xtw,cav. We can then write

�xcav = R(✓,�)�xtw + �xtw,cav (4.20)
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Usually, the tweezer potential is su�ciently strong to overcome any potential

generated inside of our optical cavity. In this case, we are free to manipulate

�xtw,cav and will almost always set y0 = z0 = 0 and change the particle’s

position along the standing wave x0 to modify the coupling.6 Returning to

the coupling terms of our Hamiltonian, we will drop the terms oscillating at

6As will later be described, we will occasionally pull the particle away from the cavity
axis, e↵ectively setting z0 ≠ 0 which reduces the overall coupling strength as will be
apparent as we follow through with the calculations.
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the sum frequency !tw + !cav and find that
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â

†

(4.23)

= E
(tw)
0

E
(cav)
0

�

z
(tw)
R,x z

(tw)
R,y z

(cav)
R ✏̂tw ⋅ ✏̂

∗
cav

× [cos(kcavx0)

+

�
�
�
�
�
�

sin(kcavx0)kcav − i cos(kcavx0)
1

z
(cav)
R

�
�
�
�
�
�

cos ✓ cos�x̂

+

�
�
�
�
�
�

sin(kcavx0)kcav − i cos(kcavx0)
1

z
(cav)
R

�
�
�
�
�
�

sin ✓ŷ
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where zR is the Rayleigh range of the gaussian mode. Generally, the chosen

cavity geometries result in kcav >>
1

wcav
, where wcav is the cavity waist.

We can therefore safely ignore most of the terms proportional to 1

z(cav)R

.

Additionally, the polarization of the tweezer field rotates the x− and y−axes

and therefore we can identify that �✏̂tw ⋅ ✏̂
∗
cav� ≈ cos ✓. We can switch to the

rotating frame at the tweezer frequency to coincide with our previous work

in which case the interaction Hamiltonian takes the form

ĤCS = −
�hgx(â + â

†
)
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†
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(4.25)
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where
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and we note that there is an additional cavity drive term which is written in

Equation 4.24 but dropped here as we want to focus on the optomechanical

coupling. It acts the same as the cavity drive discussed in Chapter 3. Note

that each of these coupling terms is of the form of our linear coupling in

Section 4.1. One should note the di↵erences in the coupling as a function

of position and polarization relative to the dispersive case as explored in

more detail in [36]. Additionally, when we discussed the dispersive coupling,

we only considered the position along the cavity axis which, as we’ve seen

here, can include some amount of all 3 of our mechanical oscillator’s linear

motions. Interestingly the z−motion is coupled to the amplitude quadrature

of the optical mode. We will explore this in more detail in Chapter 7.

4.4 Heating Rates and Dissipation

We discussed heating rates in the context of the mechanical oscillator, trapped

by an optical tweezer inside of a vacuum chamber. Now that the mechanical

oscillator is coupled to an optical cavity, we have introduced another path

for noise to couple to the oscillator.

4.4.1 Intensity Noise

Since the particle is now coupled to the cavity field, it can experience an

additional intensity noise term. Previously, we had only considered if the
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4.4. Heating Rates and Dissipation

trapping potential was fluctuating in which case the mechanical frequency is

directly e↵ected. In the case of the cavity, there are three di↵erent regimes

of interest. The first is the low intracavity population limit in which case

the perturbation to the trapping potential is minimal and can safely be

ignored. The second is when the standing wave along the cavity constitutes

the majority of the harmonic potential along that direction. In this case,

the intensity noise of the laser couples exactly as it did before, just now for

the cavity potential.

The third case is the intermediate regime whereby the tweezer and cav-

ity potentials are comparable. In this case, it is important to distinguish

between intensity noise contributing to the modulation of the trap frequency

and intensity noise modulating the trap position. As we saw in Section 4.1,

the coupling of the oscillator to the cavity can give rise to both a harmonic

potential and a linear gradient term, depending on the position of the par-

ticle along the standing wave. Intensity noise at the harmonic potential

modulates the trap frequency and we can then add the intensity noise of the

cavity field to that of the tweezer.

At the intensity slope however, the particle experiences a force propor-

tional to the gradient of the field, giving rise to a shift in the trap center

proportional to the intensity of the cavity field. Intensity fluctuations at this

point shake the trap in which case we get the heating rate from Subsection

2.3.3.

When operating in the dispersive regime, as we increase the coupling by

increasing the intracavity field, the e↵ects of the intensity noise in the cavity

field can become comparable to that of the tweezer. In this dissertation

however, all our dispersive coupling is weak and purely for diagnostics in

which case we can safely ignore the impacts through this channel.

For coherent scattering, we must remember that the intracavity photon

number scales like

�↵0�
2
=

E
2

d

�

2
�
2
+�2

cos2 kcavx0 (4.31)
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while g
2
x ∝ sin2 kcavx0. Therefore, when we maximize the coupling we are

minimizing the intracavity intensity and therefore we can again safely ignore

this e↵ect in most cases.

4.4.2 Finite Laser Linewidth and Laser Phase Noise

Laser phase and frequency noise can be thought of as two representations of

the same fluctuations. We therefore consider only frequency noise and one

can make an analogous argument for phase noise. Due to the cavity transfer

function, frequency noise can couple to the mechanical oscillator through

the transfer function of the optical cavity, transducing frequency noise to

intensity noise.

This e↵ect has been discussed at length [60] and we will proceed by

examining how it plays a role in both dispersive and coherent scattering7.

SFF (!) ≈ g
2
�↵0�

2
��l(!) − �

∗
l (−!)�

2
S�̇�̇(!). (4.32)

Note that it depends on the number of photons in the cavity and the de-

tuning. Intuitively, if there are no photons then the fluctuations are purely

quantum and the classical phase noise does not contribute to the motion of

the particle. Similarly with the detuning, we expect the two systems to be-

come uncoupled at resonance, again removing a channel for the phase noise

to interact with the particle. This intensity noise then can modulate the trap

frequency or the trap position as discussed before. As before, this e↵ect is

greatly suppressed when we maximize the coupling via coherent scattering

and the intracavity field is approximately vacuum. Furthermore, the e↵ect

of it for our dispersively coupled diagnostics will also be suppressed as we

use a resonant mode as will be discussed in Chapter 5. This has been a

significant barrier to ground state cooling in previous iterations since the

7Note that the convention of the paper gives intensity noise in units of Hz compared
with the RIN discussed earlier which has units of Hz−1. We can unify the two by dividing
by the appropriate frequency scale ⌦2

x.
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expected bath occupation is

n̄�̇�̇ = �↵0�
2 ���

⌦x

S�̇�̇(!)


(4.33)

which for the dispersive case is well above the groundstate for typical laser

linewidths. Fortunately, for coherent scattering, we can minimize �↵0�
2 and

therefore the phase noise becomes irrelevant.
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The Experimental Apparatus
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Chapter 5

The Experimental Apparatus

The experimental apparatus has been the product of many generations of

students work and has evolved into the iteration shown in Figure 5.1. The

iteration described in this dissertation is composed of 5 main subsystems:

laser preparation, the vacuum chamber, particle loading and the tweezer, the

optical cavity, and detection. To understand the purpose of these subsystems

we conside our general scientific procedure; we detect the motion of an

nanoparticle position inside of an optical cavity while trapped in an optical

tweezer.

5.1 Overview of the Apparatus

A system diagram can be found in Figure 5.2 which outlines the relationship

between the di↵erent sections. The role then of the laser preparation is to

generate enough optical power to trap the particle in the optical tweezer

as well as optical modes for reference to the optical cavity and detection.

The vacuum chamber is the environment in which the entire experiment

takes place and needs to enable the loading procedure at near atmospheric

pressure as well as our scientific goals in the ultra-high vacuum (UHV)

regime. The particle loading is how we introduce the nanoparticle into

the vacuum chamber in a targeted way to trap single nanoparticles in the

optical tweezer. We need some way of referencing the optical tweezer to

the optical cavity in position, polarization and frequency. Finally, we have

many di↵erent types of detections which we use to observe the optical and

mechanical components of our optomechanical system.
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5.1. Overview of the Apparatus

Figure 5.1: The optical layout of the apparatus. The laser source is
split into three main paths: one for locking the laser to the optical cavity
and two for detection. The locking, as described in more detail in Section
5.3.2 utilizes an electro-optic modulator (EOM) and filtering cavity (FC)
to generate a single sideband. This is then referenced to the optical cavity
and the reflection is redirected to an photodiode using a Faraday rotator
(FR) and polarizing beamsplitter. These elements are used in conjunction
with the locking electronics to create a Pound-Drever-Hall lock (PDH Lock).
Most of the source laser is used to generate the optical tweezer which and
this same tweezer light is detected by an optical setup equivalent to a quad-
rant photodiode (QPD). This is discussed in more deteail in Section 5.6.1.
Finally, light exiting the cavity is mixed with a local oscillator to perform ei-
ther a homodyne or, as shown here using an acouso-optic modulator (AOM)
to shift the local oscillator frequency, heterodyne measurement. This cavity
detection is discussed in Section 5.6.2
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5.2. Particle Loading

Figure 5.2: A block diagram of the components of the apparatus.
The relationships between the di↵erent sections of the apparatus are out-
lined.

5.2 Particle Loading

In some sense the starting point of the experiment, the particle loading has

seen great technological improvement in recent years. Particles have been

loaded via an aerosol [61], piezoelectric vibrational platforms [62], and laser

induced acoustic desorption (LIAD) [63–65]. Arguably the most technolog-

ically simple, we utilize the aerosol method for historical reasons.

This method entails keeping the nanoparticles in a liquid suspension and

using a device, in our case a so-called nebulizer, to aerosolize this suspen-

sion which is sprayed into the vacuum chamber. The droplets, containing the

nanoparticles, disperse and explore the vacuum chamber, eventually passing

through the optical tweezer and probabilistically being trapped. This is akin

to loading via an atomic dispenser [66] except the number of particles inter-

acting with the trap cross-section is significantly lower leading to individual

trapping events instead of a trapped gas buildup in a magneto-optical trap

for instance.
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Figure 5.3: Scanning electron microscope image of three 70nm ra-
dius silica nanospheres.

5.2.1 The Nanoparticle

We use silica nanospheres purchased from Microparticles GmbH for all of

the experiments described in this dissertation. We use silica as the material

due to its technological background allowing for consistent particles to be

manufactured, as well as the thorough study of its optical characteristics in,

for instance, optical fibers [67]. It has been shown to have a small optical

absorption coe�cient at telecom wavelengths, allowing the use of another

mature industry.

The properties of these nanospheres are summarized in Table 5.1. The

Property Value
Density8 1850kg�m3

Radius9 71.5 ± 2nm
Index of Refraction (at 1064nm)[68] ∼ 1.5
Absorption Index (at 1064nm)[68] ∼ 10−7

Table 5.1: Properties of typical silica nanoparticles.
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nanospheres come in a water suspension with a concentration of 1.8 × 1010

particles per microliter10. We can directly verify the radii of the nanosphers

by letting a droplet dry on a glass slide and imaging the resulting cluster in

an scanning electron microscope (SEM) as can be seen in Figure 5.3. Due

to the size of the particles relative to the necessary conductive gold coating,

measuring the radius using individual nanosphere images leads to a large

uncertainty. Instead, we use fact that the attractive Van der Waals forces

between the nanoparticles tends to lead them into a tight-packing structure.

In this structure, the distance between neighbouring nanoparticles should

be twice the radius even with the additional gold coating, allowing a more

precise and accurate verification of the manufacturer’s parameters.

The mass of a given particle can be characterized in situ as detailed in

[36]. Using the relative amplitudes of the linear and quadratic couplings,

one can deduce the mass of the particle in a calibration-free measurement.

This has been used, in conjunction with the radius measurement, to verify

the manufacturer’s specified density.

5.2.2 Aerosolization and the Nebulizer

The aforementioned clustering behaviour of the nanospheres is undesired

when it comes to loading. We want to avoid loading a cluster of particles and

the aerosolization is therefore designed to maximize the probability of having

at most a single nanoparticle in each drop. We use the Omron MicroAIR

U22 nebulizer11 which has a droplet size of 2.1µm. We will typically further

dilute the particle suspension with isopropanol at a ratio of 1:1000 by volume

which results in the average aerosol droplet containing 0.7 nanoparticles.

This results in the occasional trapping of an empty isopropanol droplet which

8The density is significantly lower than that of other silica materials ranging from 2000−
2600kg�m3. This is due to a vesicular texture believed to be a result of the manufacturing
process. This density has been experimentally confirmed.

9Occasionally we will use a larger particles with a radius of 104 ± 2nm as measured
during our work ”Dry launching of silica nanoparticles in vacuum”[62]. In this case, it
will be noted in the text.

10This is quoted as 5% of the weight is nanoparticles
11Some of the later work was done with the Omron MicroAIR U100 which has a droplet

size of 2.25µm due to damage and subsequent inability to repurchase the U22.
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can be detected12 and removed from the trap.

In an attempt to further reduce the probability of clusters, we use a

vortex mixer to agitate the water suspension before we take our sample for

dilution. Once the sample has been added to the isopropanol we again use

the vortex mixer to thoroughly incorporate the two liquids. The e�cacy

these steps is still unknown but the entire procedure produces the desired

results.

The nebulization rate is stated to be ∼ 5µl�s giving o↵ approximately

108 droplets every second. We have observed a decrease in the nebulization

rate indicating that this may be a gross overestimate for nominal use. It is

unknown for how long the droplets stay aerosolized nor if the presence of

the nanoparticles impacts the aerosolization.

5.2.3 Loading

Loading is primarily done via di↵erential pumping. The nebulizer is kept in

a small air-tight enclosure as it produces the aerosol. It is then connected to

the vacuum chamber, which is held below atmospheric pressure, via a plastic

tube. When the valve between the two sections is opened, the pressure

di↵erential causes the aerosol to be transported, along with the gas inside the

nebulizer chamber, into the vacuum chamber. An additional tube connects

the nebulizer chamber to either a nitrogen tank or filtered air to provide a

constant flow into the chamber when the valve is open. The location of this

inlet tube inside the nebulizer chamber relative to the outlet tube impacts

the e�ciency of the procedure as the flow of the aerosol can be manipulated.

The current apparatus is shown in Figure 5.4. Opening and closing the valve

between the two chambers is done manually and therefore introduces a large

amount of variability.

We know that some portion of the aerosol sticks to the walls of the neb-

ulizer, tubing or vacuum chamber because we can continue loading particles

of a given size even after we switch the particle size in the nebulizer solution.

12When a particle is trapped inside of the optical tweezer, we evacuate the chamber
until 10−2mbar. Isopropanol or water will evaporate rapidly at these pressures, leaving a
clean particle if there is one.
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Figure 5.4: The loading section of the experiment. The nebulizer pro-
duces an aerosol from the nanoparticle suspension. This fills the prepara-
tory chamber before the gate valve to the science chamber is opened and the
pressure di↵erential pulls the aerosol into the main chamber. A second tube
allows filtered air or nitrogen to be sucked into the preparatory chamber to
maintain the crossflow.

This e↵ect diminishes after a subsequent spraying events as the droplets that

were likely to have been pulled from the surfaces are depleted.

The aerosol quickly disperses throughout the vacuum chamber and droplets

can be seen passing in the vicinity of the tweezer for tens of minutes. If a

particle has not been trapped after this time we usually evacuate the vacuum

chamber and create a new aerosol.

5.2.4 Limitations and Future Considerations

This apparatus is extremely cheap and simple to operate which allows for

fast prototyping of new experimental setups. This comes at the cost of

54



5.2. Particle Loading

reliability and cleanliness of the vacuum chamber. As discussed before, this

scheme is a probabilistic loading process in which the individual events are

visible on a human timescale as opposed to atomic loading via a dispenser

or e↵usive source. This means that the timescale for loading a particle

can be short, oftentimes after a single spraying event (∼ 30min), or it can

be inconveniently long. Occasionally, multiple days have gone by without

being able to trap a particle. During this time, diagnostics are di�cult to

perform as all visual indicators are constant.

Additionally, this loading introduces water, isopropanol and gas into the

vacuum chamber, none of which would ideally be there if we want to work

in UHV. This ”wet” loading slowly degrades the cleanliness of the vacuum

chamber, increasing the outgassing rate and limiting the base pressure of the

system. Furthermore, the aerosol droplets can stick to surfaces inside the

chamber which impact the performance of optics. It is unknown how this

e↵ects the optical tweezer microscope objective but if the cavity is inside

the vacuum chamber during a spraying event, it can increase the scattering

losses from the mirrors. This necessitates the removal of the cavity from the

vacuum chamber during loading as will be discussed in Section 5.5.1.

As such, a ”dry” loading scheme would certainly be a desired upgrade,

especially if it can be performed at low pressures. This would increase

the repetition rate of high cooperativity experiments as it currently takes

many hours to pump from atmospheric pressure down below 10−6mbar. At

the moment, the base pressure of the vacuum chamber is such that we are

always limited by collisions with gas molecules instead of radiation pressure

and an improvement in the cleanliness of the environment would allow us

to reach this regime.

An additional consideration for future experiments is the option to switch

either laser frequency or material. At the time of inception for this experi-

ment, fabrication of silicon nanospheres was a developing technology. How-

ever, now commercial manufacturers can reliably produce usable nanospheres.

The improved optical properties that coincide with switching to 1550nm

along with the decrease in absorption index (down to < 10−12 for silicon at

1550nm[69]) suggest the technological benefits may outweigh the setbacks
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associated with adopting a new infrastructure.

5.3 Laser Preparation

Since we are not probing atomic transitions, the restrictions on the laser

setup are greatly reduced when compared with a typical AMO experiment.

The only frequency reference we need to compare to is that of the optical

cavity since the nanoparticles have no strong absorption lines. The absence

of internal transitions simplifies the number of frequencies we need to tune.

Nonetheless, we need to generate enough light for trapping, locking and

detection and properly interface this with the experiment. The entire laser

preparation and distribution is outlined in Figure 5.1.

5.3.1 Master Laser

The laser system starts with the light out of a Coherent 1064nm 2WMephisto

laser13. While our experiment can operate using the output of the Mephisto

as the sole source, we have opted to use it as a master laser for a fiber

amplifier. We have used both the Keopsys 1064nm 10W CW Ytterbium

Fiber Amplifier and the Azurlight Systems 1064nm 10W Fiber Amplifier

to increase the amount of available power. The master and amplifiers were

chosen to minimize the intensity and phase noise while providing adequate

power for the entire experiment. The Mephisto demonstrates its best noise

performance when run at full current so we couple the excess light into a

fiber which can be used for diagnostics. Conversely, the degradation of our

optical components is highest at full amplifier power so we typically run it

at ∼ 4W instead of the full 10W.

We characterized the residual intensity noise (RIN) of the master laser

system which can be seen in Figure 5.5. These values of the (RIN) were

used to compute the estimate for the intensity noise heating in Subsection

2.3.2.
13This laser has degraded over time and has a maximum output power of only 1.6W

now.
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Figure 5.5: The measured residual intensity noise (RIN) of the mas-
ter laser setup. As discussed in Subsection 2.3.2, laser intensity noise gives
rise to parametric heating. To characterize this process we measure the RIN
of the Mephisto (blue) and the light after the fiber amplifier (Keopsys) used
for trapping (orange). We are interested in the shaded gray region in which
case both spectra largely overlap. However, the additional noise outside of
this region is still technically problematic which, in part, lead to the switch
to the Azurlight fiber amplifier towards the end of this research.

A thorough characterization of the laser system has been performed[36]

but one additional property to note is the mode-hop free range of the laser.

As outlined in Figure 5.6, the laser cavity itself has multiple longitudinal

modes which interact with the gain medium to lase. Depending on the posi-

tion of the gain profile relative to these modes, the laser can run in a single

mode or mode-hopping configuration whereby neighbouring cavity modes

compete for gain. Due to the locking scheme discussed in the subsequent

subsection, the lifetime of the lock is limited by the mode-hop free range of

the laser as a mode-hop will change the laser frequency by ∼ 5GHz which is

clearly outside of the lock bandwidth. Figure 5.7 shows the tuning perfor-

mance of the Mephisto that we have independently verified. Additionally,

operating near a mode hop can degrade the noise performance of the laser

and is therefore undesirable.
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Figure 5.6: Diagram of the mode hopping mechanism. As the tem-
perature increases, the cavity modes and the gain profile shift at di↵erent
rates. This means that by tuning the temperature, one can change which
cavity mode is supported by the gain medium. However, when the gain
profile amplifies multiple modes then the laser cycles between stimulated
emission from each mode, hopping back and forth. These cavity modes can
be far apart in frequency space causing large jumps in the lasing frequency.

5.3.2 Cavity Lock

The first beam to be derived from the master is the cavity lock beam. Since

our cavity is not stabilized, drifts in the cavity length due to thermal e↵ects

cause the free-spectral range to change and therefore the detuning of the

master relative to the cavity. To compensate for these changes, we lock

the laser to the cavity instead of the cavity to some other reference. This

comes with the advantage of a significantly more simple cavity holder and

alignment at the cost of decreased lock lifetime due to the finite tuning

range. More specifically, the mode hop free range corresponds to ∼ 7.5GHz14

of tunable range. If the laser is locked to the cavity at the time of a mode

hop, this will result in the loss of lock.

We use series of cascaded locks to bypass the limited bandwidth of our

individual feedback servos. To maximize the range, we use the laser tem-

perature to apply near-DC feedback for slow drifts which, as previously

14This laser has the standard tuning range but an extended tuning range model exists
that would increase the mode-hope-free range from ∼ 2.5○C to 4 − 5○C.
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Figure 5.7: The tuning performance of the 1064nm 2W Mephisto
used as the master laser in our system. The mode-hop-free range is
roughly 2.5○C. This figure is taken from the Mephisto data sheet.

mentioned, can then compensate many gigahertz which would be outside

the range of all but a few electro-optical modulators (EOMs)15. For faster

feedback, we utilize the piezoelectric transducer inside of the laser which

stresses the Nd:YAG crystal, modifying the gain structure and therefore

lasing frequency. The piezo element has a bandwidth on the order of 1kHz.

One can additionally use an AOM or EOM for a final fast feedback stage

but this is unnecessary for the work discussed in this dissertation.

To lock to the cavity we must interrogate it with the laser field. Since

the mechanical oscillator will couple to the intracavity field it is important

that we forgo any unnecessary coupling of noise. The locking light would

be dispersively coupled to the particle and we can use the results of Section

4.4. As we’ve seen, one way to do so is to use a resonant drive as our locking

mode. Additionally, we want the drive to be weak so as to be a negligible

perturbation to the trapping field. Lastly, for detection purposes, it is useful

to use a di↵erent cavity mode than our coherent scattering mode so that we

15An additional drawback to using an EOM is the insertion loss. One could potentially
increase the tuning range with specific EOMs beyond the mode-hop-free range though.
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can frequency filter the two di↵erent components.

These criteria result in the locking scheme is shown in Figure 5.1. We

use a fiber EOM16 to shift part of the master laser by !Lock ∼ !FSR ≈ 14GHz.

To eliminate the carrier and unwanted second sideband, this light is passed

through a homebuilt filtering cavity17. This filtering cavity is side-of-fringe

locked to the desired sideband. The transmitted light is then locked to the

optical cavity via a Pound-Drever-Hall (PDH) lock which applies feedback

through the Mephisto’s piezo element. For the PDH lock, a 6MHz dither is

applied by the aforementioned EOM and the frequency is chosen such that

it is also transmitted by the filtering cavity. The feedback signal for this

lock is used as the error signal of a slow lock using the laser temperature to

correct for slow drifts. Both the filtering cavity’s side-of-fringe lock and the

PDH lock are controlled by a Toptica PID 110 while the slow thermal lock

is controlled by the in-built PID on a Zurich Instruments HF2LI Lock-in

Amplifier18.

When everything is locked, the light, which was split before the EOM,

is detuned from the locking mode of the cavity by !lock. By setting !lock =

!FSR this light would be resonant with the next cavity mode and by tuning

!lock we can therefore tune the detuning of the laser relative to this mode.

The consequence of this scheme is the timescale on which the detuning

can be changed. Changing !lock detunes the locking laser from the locking

mode, in which case the various locks react to compensate with the laser

frequency. Changing this too fast would result in losing one of the locks.

In principle, the detuning can be changed by up to 10MHz in a single step

but we usually divide this into multiple steps, changing roughly 100kHz

per second. This way we can monitor the lock for any instability as we

modify the detuning and make the necessary adjustments to compensate.

16The PM-0K5-20-PFA-PFA-106-LV-UL model from EOSPACE.
17The filtering cavity is a simple Fabry-Perot cavity with a piezo element placed between

the cavity mirrors to modify the cavity length for locking. The cavity has a linewidth of
FC ≈ 2⇡ × 80MHz.

18We use the HF2LI over the PID 110 to additionally tune the o↵set of the output signal.
This is because we can finely tune the laser temperature when looking for an initial locking
signal as the manual temperature control of the Mephisto is sensitive and di�cult to set
accurately. It can also be used to record the error signal through the provided software.
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An additional limitation is the locking paradigm which was chosen for its

simplicity. As previously mentioned, since the laser is locked to the cavity

and the laser has a finite mode hop free range, this sets a limit on how far the

laser can follow the cavity once locked. If the laser comes unlocked when the

vacuum chamber is at low pressures the optical damping is removed and the

particle will heat out of the trap. It is therefore of the utmost importance

that the laser remains locked to the cavity for pressures below 10−2mbar. To

quantify the amount of expansion this would allow for, we first have to recall

that the cavity mode we are locked to ⌫q = q⌫FSR = q
c
2L corresponds roughly

to our laser frequency of 282THz. Changes in the cavity length will then

impact the FSR and this e↵ect is amplified by the mode number. As we will

see, the cavity length is L = 1.07cm which has an associated free spectral

range of ⌫FSR =
c
2L = 14.0192GHz. This means that q ≈ 20000. The mode-

hop-free range sets a maximum change in the cavity length of ∼ 265nm. The

cavity is made out of aluminum which means it has a thermal expansion

of roughly 20µm�○C which means we can tolerate roughly 1○C of change

in the holder temperature in optimal conditions. Given variability in room

temperature and other heating mechanisms, this can set a finite locking

duration which has consequences for experiments we want to perform as

we will see in Chapter 6. The pressure also changes the e↵ective cavity

length, just to a much smaller degree. This discussion will be continued in

Subsection 5.4.1 when we consider vacuum pumpdowns.

5.3.3 Optical Tweezer

The laser light derived from the master laser is focused by our microscope

objective19 which is placed inside of the vacuum chamber, as shown in Figure

5.1. Typical trap parameters are shown in Table 5.2. The microscope

19The microscope objective is an Olympus LMPL 100x IR which has a numerical aper-
ture NA = 0.8, a focal length of f = 1.8mm and a working distance of WD = 3.4mm.
One should note that although we overfill the objective, the e↵ective numerical aperture
is significantly smaller than the specified NA.

20As mentioned previously, radiation pressure will displace the particle from the beam
waist, reducing the experienced trapping potential.
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Property Value
Impinging Power 400mW
�⌦x, ⌦y, ⌦z� (305,275,80) kHz
�Wx, Wy, zR� (0.67,0.77,1.7)µm

E↵ective NA 0.56
Filling Factor 0.7

Table 5.2: Typical optical tweezer parameters for a silica nanopar-
ticle with a radius of 73nm20. Tweezer beam parameters are calculated
using Appendix B and the measured mechanical frequencies.

objective is mounted on a triaxial nanopositioner21 to align the tweezer

waist relative to the optical cavity as will be discussed shortly.

In principle, the laser for the optical tweezer can be directly taken from

the master however we have chosen to pass it through a double-pass AOM22

running at 80MHz to enable us to quickly switch the detuning, bypassing

the earlier discussed limited tuning speed. This was driven by an arbitrary

wave generator23 to enable fast frequency changes. Since we use a 10W

amplifier as the main laser source, we have additional headroom to increase

the trapping frequencies further.

To increase the usability and day-to-day stability of the setup, the tweezer

comes from a single-mode optical fiber. Unfortunately, this fiber was not

polarization maintaining and the polarization of the tweezer slowly drifted

on the timescale of weeks. This was su�cient for our purposes as a set of

waveplates before the beam enters the vacuum chamber ensured we could

generate any polarization. For future experiments this would be a simple

improvement to make.

21We use a Mechonics MX35 positioner with a piezo electric inertial drive in conjunction
with a Mechonics CF.030.0003 driver to reach a step size of approximately 8nm. This stage
has a slip-stick motion with ”jumps” in the motion every 64 steps at which point the stage
moves by an uncalibrated amount.

22IntraAction ATM-804DA6M
23Tektronix AFG3152C
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5.3.4 Local Oscillators

The final component of the laser preparation is that of the local oscillators

for detection. As we will see, we need to derive local oscillators for both

heterodyne and homodyne detections.

For the locking-mode homodyne, a beamsplitter after the filtering cavity

splits o↵ some light. Since the signal beam then follows an alternative path

which transmits through the optical cavity, we need to compensate for any

di↵erential phase drifts between the two arms. This is done by modulating

the path length of the local oscillator. To realize this, one of the mirrors

in the local oscillator beam path is mounted on a piezo. The phase of the

local oscillator is then locked to that of the signal using the DC voltage of

the detector and the previously mentioned Toptica PID.

Heterodyne detection does not require this di↵erential phase stability

and instead the technical requirement is generating the frequency di↵er-

ence between the local oscillator and signal. Restrictions on this frequency

di↵erence come from the intensity noise spectra, detector bandwidth and

sampling frequency.

Intensity noise impacts both the physics we are interested in measuring

and the way in which we measure it. We can suppress it with clever detection

schemes but it is useful to additionally choose a frequency range in which

the intensity noise is minimal and ideally flat. Given the intensity noise

spectra for our laser shown in Figure 5.5, our heterodyne frequency would

ideally be at least 2MHz.

Our detector bandwidth is 70MHz and the maximum sampling frequency

of our DAQ24 is 60MHz. To then sit well below these limits, the heterodyne

frequency has been set to ∼ 10MHz.

We achieve this frequency di↵erence using two AOMs25 in series, one

that shifts the frequency up and the other that shifts it down. We have

chosen low phase-noise frequency generators26 to limit the impact of the

24Picoscope 5442D
25AA Opto-Electronic MT200-B100A0,5-1064
26We used a Keysight E8257D with an Agilent Technologies E8257D since they each

had one channel and later switched to a four channel AnaPico APMS06G-4.
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classical noise of the local oscillator on the detection.

5.4 The Vacuum System

The optomechanical aspect of the experiment is housed inside of a vacuum

chamber to allow us to control the interaction between the nanoparticle and

its surrounding atmosphere. This has additional benefits of providing a clean

environment for the optical cavity to reduce the slow deterioration of the

cavity linewidth as the losses from scatter on the mirror surfaces increases.

Therefore, the constraints on the vacuum system are that it must reach

pressures where the quantum behaviour of the particle is dominant (P ∼

10−6mbar) and allow us to do so from room pressure due to the spray of the

particle aerosol for loading. A further constraint is that we must be able to

insert and remove the optical cavity from the vacuum chamber to protect

it during loading as the deposition of the aerosol on the cavity mirrors will

cause additional losses. This is discussed in more detail in [62, 36].

The vacuum setup to accommodate these requirements is shown in Fig-

ure 5.8. The included quick-access flange is large enough that one can man-

ually insert and remove the cavity. All of the windows are standard flat

windows except for the one window on the detection side to avoid back reflec-

tions coupling to the cavity. Most of the vacuum system remains unchanged

from previous iterations [36]. The main science chamber is a homebuilt cube

with ports on all main faces. The quick access window sits on the opposite

port from the tweezer entry port. A CF63 cross on top of the chamber con-

nects it to the combined Pirani-Cathode pressure gauge as well as all of the

pumping. Additionally, the connection to the nebulizer for loading is done

through a gate valve.

5.4.1 Pumping

Since the vacuum system needs to load at pressures near ambient conditions

and subsequently pump down to pressures of 10−6mbar, the pumping system

consists of three main parts: a leakage port for venting the chamber, a high
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Figure 5.8: A schematic of the vacuum system used in this work.

pressure pump and a low pressure pump.

Since we need to equilibriate the internal pressure of the chamber with

the lab conditions in order to safely open the quick access door for adding

or removing the optical cavity, a connection is included, by way of a needle

valve, to leak in filtered air or nitrogen to maintain the cleanliness of the

chamber. A pressure gauge is kept at this point to provide high pressure

data outside of the range of the Pirani-Cathode. The gate valve from the

main chamber to this pumping section allows us to be less stringent on the

vacuum level of this connection. Another gate valve seals o↵ the scroll pump

from this leakage connection so we don’t pump in our venting gas.

The scroll pump (Edwards nXDS6i) acts both as a backing pump for

the low pressure pumping stage and as a high pressure pump of the science

chamber. The combination of gate valves allows for all pressure requirements

to be satisfied. With this pump we can quickly reach ∼ 10−2mbar although

its performance does not reach its specified value despite multiple rounds of

maintenance.

For the low pressure pumping section we have chained turbo pumps to

achieve the best pumpdown performance. The scroll pump acts as the back-
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ing pump for a small turbo pump which then acts as the backing pump for a

larger turbo pump (Edwards nEXT300D). This was done because of the in-

su�cient performance of the scroll pump which decreases the pumping speed

of the large turbo pump. As we will see, the pumping speed is important

for the success of this experiment. The turbo pump is then connected to a

large CF63 metal bellows to act as a damping of vibrations however spin up

of the turbo pump is still detrimental to the cavity lock. As such, we keep

the pump running at full speed and seal o↵ the bellows with a gate valve

and open the valve when we want to pump. Additionally, the gate valve

has an audible acoustic response when initially opening which can cause an

undesirable impulse in our lock. We therefore keep the gate valve open just

past this point but still closed enough that the pumping rate is negligible

when compared to outgassing processes.

The pressure of the science chamber was recorded during a typical pump-

down and is shown in Figure 5.9. To reach pressures where the cooperativity

C > 1 takes approximately 10 hours. The quick access door and improperly

clean vibration absorbing viton inside of the chamber likely contribute to

the duration of this procedure. More dominant however is the ”dirty” load-

ing technique as spraying of a liquid, especially one containing water, is

terrible for vacuum cleanliness. We have observed that the pumpdown is

slower by up to ∼ 1.5 times right after spraying the nanoparticle aeorosol into

the chamber. Altogether, this can cause competition between the reachable

pressures in the chamber and lock lifetime as the cavity length drifts during

the pumpdown. Due to the evacuation of the chamber, it is hypothesized

that the cooling rate of the cavity holder is decreased and as it continuously

absorbs scattered light from the tweezer, it is not in thermal equilibrium

during the pumpdown. It almost always causes the laser temperature to in-

crease as the locks try to follow it. The mode-hop free range then sets a time

limit on the lock lifetime. The resulting timescale was dependent on what

time of day the measurement was performed as the ambient lab conditions

also fluctuated due to the insu�cient stability set by the air-conditioning

system. We found starting the measurement in the evening and measuring

in the early morning meant the temperature would stabilize and even start
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decreasing towards the end of the pumpdown as is the case in Figure 5.9.

For cases where the lock would near the end of its range before the

desired pressure was reached, we could slowly close the gate valve to the

turbo pumping stage and allow the outgassing to raise the pressure inside

the science chamber. Once the pressure increase levelled o↵ we could open

the needle valve and vent the chamber to our nominal pressure where we

could reset the lock and start the pumpdown again. Subsequent pumpdowns

would be faster by up to ∼ 1.5 times.

5.4.2 Future Considerations

The competition between pumping speed and lock lifetime limits the pres-

sures reachable by the apparatus. Additionally, the probability of measure-

ment success decreases as the required pressure decreases as other factors in

the environment can cause the lock to decrease. As such, for future quantum

experiments it is imperative that such an apparatus switches to a ”clean”

loading technique where the sanctity of the chamber remains uncontami-

nated. Previous success in the group has come in the form of piezo [62] and

hollow-core loading in UHV [70, 71] and recent advances in light induced

acoustic desorption (LIAD) [65] are also promising.

5.5 The Optical Cavity

The optical cavity consists of two identical mirrors with a high reflection

coating27 in a near-confocal configuration R ≈ L. All of the cavity parame-

ters can be found in Table 5.3. Note that our optical cavity is double sided

since we operate with identical mirrors. Additionally, to fit the mirrors with

the microscope objective, they were cut from their circular shape to that of

a strip as shown in Figure 5.10. This asymmetry breaks the degeneracy of

the polarization modes leaving a separation of 160kHz between the horizon-

27Layertec
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Figure 5.9: A record of the science chamber pressure and laser tem-
perature during a pumpdown from a nominal pressure of 4mbar
to 10−6mbar. Note that, during the entire duration of the graph, the low
pressure pumping stage is pumping at full capacity. The chamber pressure
(blue) takes up to 10 hours to reach base pressures between 10−7−10−6mbar.
The low pumping speed and high base pressure is likely due to high out-
gassing of the chamber. The frequent spraying of a liquid into the chamber
is a dominant contribution and we have correlated the time between a load-
ing event with pump speed. Additionally, over this time, the temperature of
the laser can change by multiple degrees Celsius as it follows the expansion
of the optical cavity. Varying ambient temperatures as well as reducing heat
dissipation through background gas collisions can play a role in this heating
process. It was therefore important to operate at night when the cooling of
the room was highest to ensure the laser stayed locked as long as possible.

tal and vertical polarization modes28. A thorough description of the cavity

construction has been previously given [72, 36].

28Since the mirrors are cut and positioned such that the mirror asymmetry aligns with
the vertical and horizontal planes of the lab frame, polarization of the cavity modes natu-
rally aligned to that of the lab frame. For cylindrically symmetry mirrors that may have
induced birefringence due to stresses from clamping or gluing, this may not be the case
and extra care needs to be take to align the cavity modes with the lab frame for simple
use.
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Property Value
Mirror Radius of Curvature (RoC) 10mm

Mirror Dimensions 6.35mm×4mm
Mirror Transmission (T ) 20ppm

Mirror Losses 30ppm
Cavity Length (L) 10.7mm

Cavity Linewidth () 2⇡ × (193 ± 1)kHz
Cavity Finesse (F) 73000

Free Spectral Range (!FSR) ∼ 2⇡ × 14GHz

Cavity Waist (W (cav)
0

) ∼ 41µm

Cavity Rayleigh Range (z(cav)R ) ∼ 5mm

Table 5.3: Properties of the optical cavity used in this experiment.

5.5.1 Cavity Insertion

As previously mentioned, the cleanliness of the mirrors would decrease if

it was left in the vacuum chamber during our ”dirty” nanoparticle loading

process. To overcome this problem, the cavity and vacuum chamber were

designed for manual removal of the cavity during the loading process and

subsequent reintroduction of the cavity into the chamber after a particle

has been trapped. This is done by venting the chamber with a clean gas29

and opening the quick access door. The cavity is clamped to its holder

by an aluminum plate which is then screwed to the base. This process is

surprisingly exceptionally stable with no discernible change to the cavity

mode coupling over time. To reduce the likelyhood of a trapped particle

being lost during the insertion of the cavity, the tweezer focus is moved away

from the cavity by roughly 5W (cav)
0

such that any coupling of scattered light

is negligible and the gas damping at STP dominates30.

29This was historically done with a filtered air system but for this work we largely
used a nitrogen tank so that the chamber could be overpressurized to reduce further
contamination.

30This becomes increasingly important as the particle size increases as both the coupling
increases and the mechanical frequency decreases. We have been able to trap up to 127nm
radius particles however they have always been lost when the cavity has been put in. This
is another reason to move to a di↵erent loading setup.
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Figure 5.10: An overview of the cavity (red) in relation to the mi-
croscope objective of the tweezer (blue). The mounting of the cavity
is omitted to not obstruct the view. Light is coupled into and out of the
cavity along the x−axis through the holes drilled into the base. The tweezer
light propagating along the z−axis is collected by a lens (NA= 0.2) that is
not shown here.

5.5.2 Noise and Drifts

Since a simple design approach was taken, the cavity is subject to long term

drifts and acoustic frequency noise. The long term drifts due to thermal and

atmospheric changes were already discussed in Subsections 5.3.2 and 5.4.1.

An important complication is relative positional instability of the tweezer

relative to the optical cavity. Since they are not housed in a monolithic

mount, they are susceptible to low-frequency vibrations which can slowly

vary the position of the particle along the cavity standing wave. Indeed we

have seen motion in the range of 50Hz couple to the particle motion resulting

in movement on the order of ��10. The long metal bellows running to the

turbo pumps exacerbated the vibrations. To counteract this, we applied clay

and foam to the bellows at specific locations to damp its vibrations shown

in Figure 5.11. This lead to a reduction in the positional drift to ��1000

shown in Figure 5.12.
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(a) (b)

Figure 5.11: Acoustic damping of the turbo pump bellows. Vibra-
tions coupled into the particle position relative to the cavity standing wave
resulting in changes to the optomechanical coupling. It was determined that
the long metal bellows connecting the science chamber and the turbo pumps
was amplifying this noise. (a) A researcher provides pressure to the metal
bellows and monitors the oscillations in the particle position to determine
locations for optimal damping. (b) The final acoustic damping configuration
used in the measurements of Chapter 6. Precise buildup of layers of clay
and foam secured by zip ties significantly damped vibrations resonant with
bellows.

5.5.3 Tweezer Referencing

Referencing of the tweezer position, polarization and detuning relative to the

cavity is critical for successful operations of the experiment. To initially align

the position we use cameras to image the optical cavity along the x−axis

and the y−axis. To roughly set the y position of the nanoparticle relative

to the center of the cavity, we pull the particle away from the cavity along

the z−axis until we can see its scattered light beside the cavity mirror using

the triaxial stage of the microscope objective. The x and z positions can be

71



5.5. The Optical Cavity

Figure 5.12: Particle position stability along the cavity standing
wave. We measure the light exiting one of the cavity mirrors which is cor-
related with the coupling of the particle to the cavity mode. We position the
particle at the cavity node where the scattered light is minimal and monitor
the change in scattered light. We can then calibrate this by referencing the
scattered light of the particle placed at the cavity antinode to extract the
particle position. We position the nanoparticle in the vicinity of the mode
for maximum sensitivity and record the position during a standard measure-
ment. The standard deviation of such drifts is ∼ ��1000 demonstrating a
high degree of stability. This is critical for suppressing phase noise heating.

done by looking at the orthogonal image. To fine tune the position, we sweep

the tweezer frequency using the piezo inside of the Mephisto which provides

∼ 100MHz of range. We then slowly tune the laser temperature to search

for light coupled out of some cavity mode on the x−axis camera as shown

in Figure 5.13. Then we can iterate this process to increase the coupling of

the particle to lower order cavity modes until we reach the TEM00 mode.

To further optimize the coupling we can lock the laser to the cavity and

take heterodyne or homodyne measurements of the cavity output. As the

particle coupling increases the signature of the mechanical motion in the

cavity signal will also increase allowing for a quantitative reference of the

coupling. We can subsequently measure the magnitude of the coupling as

outlined in Chapter 6. We can additionally use the DC value of the light

exiting the cavity to position the particle along the standing wave.

In order for the positioning referencing to work we need to set the polar-

ization of the tweezer to be along the y−axis to orient the dipole radiation
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Figure 5.13: An image of the cavity output showing the particle
coupled to a TEM10 mode during the tweezer alignment.

pattern along the cavity axis. Again, due to the geometry this can roughly

be done according to the reference frame of the lab but for optimization we

use the mechanical signal in the cavity measurement. From Equation 4.30,

we know that the x and y motion maximally couple to the cavity with or-

thogonal polarizations. In this dissertation we’re primarily concerned with

the x motion so we rotate the tweezer polarization to maximize the x signal

in the cavity output and minimize the y. This is depicted in Figure 5.14.

This ensures any slight mismatches between the lab frame and the cavity

frame are accounted for.

Lastly, due to the locking scheme, the detuning can drift as the cavity

expands and contracts. This is because we are locking the laser to a cavity

mode one free spectral range away from the coupling mode. Changes in the

cavity length directly impact the free spectral range. While the laser is still

locked to the cavity, !FSR can change by at maximum ∼ 2⇡ × 350kHz. This

is on the order of our mechanical frequency and therefore a very relevant

change. Therefore during an experimental run we repeatedly perform a

weak measurement of the detuning. We derive a weak probe beam from the

tweezer light and use this to drive the cavity and detect the light reflected
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Figure 5.14: Spectra of the cavity output for varying polarization.
For vertical polarization the x motion is coupled to the cavity and the y is
coupled for horizontal polarization. In between the two modes can couple
in any mixture. Note the frequencies change slightly as the diagonal polar-
ization is not perfectly linear and therefore modifies the tweezer geometry
slightly according to Appendix B.

from the cavity on a photodiode.31. We can sweep this light independently

from the tweezer light by way of an EOM to measure the exact detuning

and recalibrate our measurements.

For all the measurements presented in later sections of this dissertation

we reference the position and polarization at least once before an experi-

mental run and the detuning is measured with almost every measurement.

This ensures we keep a minimal amount of uncertainty for all of our system

parameters.

31We actually perform the same procedure for an optomechanically induced trans-
parency (OMIT) measurement [36] but we set the expected detuning to be much larger
than the mechanical frequency so we don’t actually see the particle signal. This e↵ectively
performs a very fast transmission measurement using the same OMIT hardware.
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5.5.4 Future Considerations

Many of the problems outlined in this section could be solved by switching

to a setup whereby the cavity is locked to a stable laser source through the

use of piezo built into the cavity holder to maintain the cavity length. One

e↵ect not mentioned previously is the fact that during pumpdown the evac-

uation of atmosphere in the chamber e↵ectively changes the cavity length

and therefore cavity mode frequency. If the nanoparticle is not positioned

at the exact center of the cavity this causes the particle to experience a

slow moving optical lattice which modulates the coupling. This can cause

problems, especially for larger particles32. If both of the cavity mirrors were

placed on piezos it would be possible to lock the DC particle position to

a single period of the standing wave thereby eliminating this problem. It

would further give another method of modulating the coupling as the piezos

are generally faster than the stable speed of the tweezer trap. This would

of course also solve the problem of lock lifetime assuming a suitable cavity

mount material, like Zerodur, with low thermal expansion is chosen.

It would also be favourable to use a single sided cavity configuration

for future iterations as it is challenging to recombine the cavity outputs to

regain the full signal to noise ratio as will be detailed in the subsequent

section.

5.6 Detection

The final section of the apparatus to discuss is the detection. For detection

of the optical and mechanical modes, we perform interferometric measure-

ments. In particular, we use light that has interacted with the optical and

mechanical modes to reconstruct the state of our optomechanical system.

We start by recalling Glauber’s model of a photodetector [73]. In this

32As the particle size increases, so too does the coupling and scattered power assuming
all other parameters stay fixed. If a large enough particle is positioned away from a cavity
node, it can scatter a substantial amount of power into the cavity and create its own
standing wave trap. This trap minima may not be situated at the tweezer minima and
can destabilize the overall optical potential resulting in the loss of a particle.
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Figure 5.15: Representations of the general detection scheme used
in this work. a) The interferometric detection in the lab frame. A signal
and local oscillator are mixed on a beamsplitter and subsequently detected
by photodiodes. Due to the phase shift from reflections, interference between
the signal and local oscillator in each of the beamsplitter outputs is perfectly
out of phase with each other. Therefore, a balanced detection scheme is
employed whereby the photocurrents of each detector is subtracted from
the other to cancel out DC noise. Mode matching of the signal relative to
the local oscillator, quantified by the visibility V, and the detection mode
relative to the local oscillator, quantified by the detection e�ciencies ⌘i,
are also illustrated. b) The beamsplitter model of the information loss.
The system in a) is expanded and each mode matching is mapped to a
beamsplitter.

seminal work, it was shown that the current of a photodetector î(t)
33 is

proportional to the number of incident photons. In particular we will write

î(t) = G �
A
f̂(�r, t)dA (5.1)

where G is the gain of the detector, A is the active area and f̂(�r, t) is the

photon flux. Usually the signal flux is weak resulting in a poor signal to noise

33Here we write that the current is a quantum observable which is then made classical
through a later decoherence channel. One can move this decoherence channel before the
point of measuring this current and rewrite it as a classical observable with no significant
changes to the results discussed here.
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ratio when comparing to realistic detection noise processes. To overcome

such a technical limitation, we amplify the signal through the use of a local

oscillator. A diagram for such a setup is shown in Figure 5.15. The field

operator at the detector is then given by

âdet(t) =Râsig + T âLO(t) (5.2)

where R and T are the reflectivity and transmittivity respectively. This has

the normal conditions that �R�2+ �T �2 = 1 and RT ∗+R∗T = 0. To align with

the real world, we note that the signal and local oscillator may not occupy

the same spatial mode. It is then useful to extend Equation 5.2 and, as will

be justified in a moment, we will only consider the mode parallel to that of

the local oscillator in which case we find

âdet,∥(t) = Te↵ �RV âsig +R
√

1 − V2âvac,V + T âLO(t)� +Re↵âvac,e↵(t) (5.3)

where �Te↵�
2 is the detection e�ciency and V is the visibility of the inter-

ference quantifying the overlap of the signal with the local oscillator. All

mismatches or losses of information are modelled as beamsplitters with their

associated vacuum modes âvac,i to preserve the total amount of fluctuations.

Then the detected current would be

i(t) ≈ G ��Te↵�
2
�R�

2
Fsig(t) + �Te↵�

2
�T �

2
FLO(t)

+ �Te↵�
2
VR

∗
T â

†
sig
(t)âLO(t)

+ �Te↵�
2
√

1 − V2R∗T â†
vac,V(t)âLO(t) +R∗e↵Te↵T â†

vac,e↵
(t)âLO(t) + c.c.�

(5.4)

where Fi is the classical detectable flux of a given mode. I have dropped all

of terms fluctuation terms not proportional to the local oscillator. The first

two terms describe the DC current associated with the coherent amplitude of

the signal and local oscillators, the third term is the term we are interested

in and the last two terms are noise terms coming from improper mode-

matching and detection e�ciency respectively.
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In the experimental realization of this detection, classical intensity noise

will couple to the current through the DC terms. To suppress this, we

use the so-called balanced detection scheme shown in Figure 5.15. In this

case, we take the other port associated with Equation 5.2 and carry out an

analogous calculation for the current of the second detector.

Let us now assume that �R�2 = �T �2 = 1

2
and the detection e�ciency for

each detector is the same. Then, taking the di↵erence of the currents from

these two detectors yields

�i(t) = i�Te↵�
2
VGâ

†
sig
(t)âLO(t) + i�Te↵�

2
√

1 − V2Gâ†
vac,V(t)âLO(t)

+R
∗
e↵Te↵ �T â

†
vac,e↵

(t) −Râ
′†
vac,e↵

(t)� âLO(t) + c.c. (5.5)

where we have to note that the quantum noise introduced by the detection

e�ciency is not common mode, hence we distinguish between â
†
vac,e↵

(t) and

â
′†
vac,e↵

(t).

To calculate the spectrum we need to first compute the autocorrelation

of our signal. For clarity, we will ignore all of the noise terms as they will a

constant noise floor to the signal which is important when considering signal

to noise but not the specifics of the mechanics. We then see that

��i(t)�i(t
′
)� = ⌘

2
G
2
��âout(t)â

†
out
(t
′
)� �â

†
LO
(t)âLO(t

′
)� + �â

†
out
(t)âout(t

′
)� �âLO(t)â

†
LO
(t
′
)�

− �âsig(t)âsig(t
′
)� �â

†
LO
(t)â

†
LO
(t
′
)� − �â

†
sig
(t)â

†
sig
(t
′
)� �âLO(t)âLO(t

′
)��

(5.6)

where ⌘ = �Te↵�
2
V
2 is the detection e�ciency, and I have assumed âLO(t)

and âout(t) are uncorrelated. Next, we will assume the local oscillator is

some coherent drive with an amplitude ↵LO =
√
FLOe

−i!LOt−i✓LO . Then we

can simplify the above expression by assuming that the mean flux of the

local oscillator is significantly stronger than that of the signal such that we

can ignore the fluctuation terms of the local oscillator. We will also switch

to the rotating frame as before in which case we found we can identify
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âout(t)→ âout(t)e
−i!dt and write

��i(t)�i(t
′
)�→ ⌘

2
V
2
G
2
FLO ��âout(t)â

†
out
(t
′
)� e

i!het(t−t′) + �â†
out
(t)âout(t

′
)� e

−i!het(t−t′)
− �âout(t)âout(t

′
)� e

i!het(t+t′)e2i✓LO − �â
†
out
(t)â

†
out
(t
′
)� e

−i!het(t+t′)e−2i✓LO�

(5.7)

= ⌘
2
V
2
G
2
FLO �Ŷ✓(t)(t)Ŷ✓(t′)(t′)� (5.8)

where !het = !LO − !d is the so-called heterodyne frequency, Ŷ✓(t)(t) =
i �âout(t)e

i✓(t)
− â

†
out
(t)e

−i✓(t)
� is an arbitrary quadrature set by ✓(t) = !hett+

✓LO. We can then see that if !het = 0 we can set one quadrature by the

phase of the local oscillator while when !het ≠ 0 the quadrature is con-

stantly scanned. These two cases correspond to homodyne and heterodyne

measurement schemes respectively.

In the case of heterodyne when the quadrature is rapidly scanned our

intuition suggests the resulting spectrum should be an average of the phase

and amplitude quadratures of the signal. We then need to consider the

timescale of the measurement ⌧ relative to the heterodyne frequency !het.

We will consider heterodynes such that !het⌧ >> 1.

S
(⌧)
�i�i(!)∝

1

⌧
�

⌧
2

− ⌧
2

�

⌧
2

− ⌧
2

dtdt
′
��âout(t)â

†
out
(t
′
)� e

i(!+!het)(t−t′) + �â†
out
(t)âout(t

′
)� e

i(!−!het)(t−t′)

− �âout(t)âout(t
′
)� e

i(!+!het)te−i(!−!het)t′e2i✓ − �â†
out
(t)â

†
out
(t
′
)� e

i(!−!het)te−i(!+!het)t′e−2i✓�
(5.9)

≈ � d!
′
�âout(! + !het)â

†
out
(!
′
)� + �â

†
out
(! − !het)âout(!

′
)� .

(5.10)

In contrast to a homodyne measurement, where the positive and negative

frequency components of the signal are added together, a heterodyne can

recover these signals which can for instance be used to measure the Stokes

and Anti-Stokes photons from a Raman scattering process. These di↵erences

are illustrated in Figure 5.16.
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Figure 5.16: Illustrations of homodyne and heterodyne spectra. For
the same signal composed of information in orthogonal quadratures (red
and blue, filled), homodyne and heterodyne detection recover significantly
di↵erent pieces of information. Homodyning the signal symmetrizes the
positive and negative frequency components of the signal but retains the
ability to measure in various quadratures (red and blue). Heterodyne instead
shifts the signal up to !het and mixes the quadratures but instead gives
information about the positive and negative frequency components of the
combined signal.

5.6.1 Tweezer Detection

To directly measure the particle motion, we take advantage of the fact that

the particle acts as a position dependent phase modulation on not only

the cavity field but also the tweezer field. Due to its size however, the

particle only modulates the phase of part of the beam, leaving the rest to

transmit una↵ected. A homodyne measurement of this tweezer field can

be performed by collecting the transmitted light34 since it includes both

34We use a lens with NA= 0.2 to collect and recollimate the tweezer light. A higher
NA objective can be used but then one must be careful of back-reflections modulating the
trapping potential.
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Figure 5.17: Detection of the particle motion via the transmitted
tweezer light. The transmitted light from the tweezer is captured and
recollominated by a small lens (NA= 0.2) before being split between the axial
and radial detections. The axial detection utilizes a portion of the trapping
light to cancel DC noise through the balanced detection. The signal is
spatially filtered with an iris to increase the SNR. For the radial detections,
a Dove prism is used to rotate the tweezer beam along its propagation axis
to vary the projection angle of the particle motion onto the two detectors.
Spatial filtering is then employed to select the regions with the relevant high
informational density before the beam is split with D-shaped mirrors and
detected.

the modulated and unmodulated fields which act as the signal and local

oscillators respectively. Fortunately, it is has been shown[74] that in addition

to the position dependent phase modulation there is also a constant ⇡�2

phase delay between the two beams which maximizes the sensitivity of this

scheme.

The specific setup for tweezer detection is shown in Figure 5.17. It is a

modification of the setup detailed in the dissertation of Uroš Delić[36]. It

is split into detection of axial and radial motions. Both detection schemes

cannot directly employ the balanced scheme discussed in Section 5.6 without

modifications. For the axial motion, defined according to the tweezer axis,

common mode noise is rejected by splitting a small portion of the tweezer

light before it enters the optical chamber and using this as the balancing
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light on the second port of a balanced detector35. For the radial motions, the

beam is split by a D-shaped mirror instead of a beamsplitter since the latter

would again lead to the rejection of the signal. Depending on the orientation

of the D-shaped mirror, di↵erent projections of the radial motion can be

detected. For full flexibility, we have two radial detections oriented such that

they detect orthogonal projections of the radial motion36. A Dove prism is

then used to rotated the beam before it interacts with the detection system

to change in which frame of reference the measurements are performed.

It has been shown that information about the axial and radial motions

are not uniformly distributed and in fact have some spatially varying in-

formation density across the transmitted tweezer beam profile[75]. Spatial

filtering can be employed to increase the signal to noise ratio (SNR). We

utilize an iris in the axial beam path and custom filters37 in the radial beam

paths to take advantage of this mechanism. Since we are predominantly

interested in measuring the motion of the particle along the cavity axis, this

is the tweezer detection we optimize and we have achieved a maximum SNR

of ∼ 30dB with a 104nm radius particle, an example of which is shown in

Figure 5.18.

5.6.2 Cavity Detection

To measure the optical mode inside the cavity, we return to the input output

relations from Chapter 3 where we found that the mode leaking out of the

cavity is given by

âout(t) =
√
â(t) + âin(t). (5.11)

We can then identify âsig = âout and use the models of detection we have

just discussed. The optical setup, including the detection of the cavity

35Thorlabs PDB-425C-AC
36A quadrant photodiode would give the same result except the increased sensor area

gives a reduced detection bandwidth. For the particle frequencies in this work it is neces-
sary to use the more complicated scheme but the principle is the same.

37We built custom spatial filters out of anodized aluminum parts. They are ”H” shaped
and e↵ectively act as two irises, the axis between which sets the angle of the radial motion
projection.
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Figure 5.18: An example of the PSD Sxx(!) reconstructed from
the tweezer detection. The computed PSD (green points) clearly shown
the x−motion at ∼ 200kHz and the z−motion at ∼ 50kHz. The latter is a
byproduct of imperfect alignment and suppression of the axial mode with
the balanced detection scheme. A DC block is added to reduce impacts of
drifts on the photocurrent resulting in the cuto↵ just below the z−motion.
A full fit (red dashed) can be done and the relevant x−motion (red shaded)
can be extracted demonstrating near perfect agreement with theory.

mode, is shown in Figure 5.1. The cavity mode is generally detected via

heterodyne but we can easily replaced the AOM generating the heterodyne

local oscillator with a mirror mounted to a piezo for locking a homodyne.

It is important to note that all of the windows on the vacuum chamber are

standard flat windows except for the one window on the side of the cavity

detection. This is to reduce parasitic standing waves from forming between

the back-reflections o↵ of the photodiodes and the vacuum window.

Since our tweezer detection has a relatively low SNR38 it is oftentimes

useful to use the cavity to reconstruct the motional state of the particle.

For the double sided cavity configuration shown in Figure 5.1 we show

38The SNR of the tweezer detection in our system is insu�cient for cooling the
particle motion close to the ground state via feedback cooling as has recently been
demonstrated[76, 77]. Since this is not the goal for the detection, it has so far been
unimportant to pursue improvement.
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in Appendix C that the heterodyne spectrum is given by
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If the drive detuning is either on resonance or far away from it, this simplifies

to

S�i�i(!) ≈ 1 +
g
2
1

x
2

zpf

��l(! − �!het�)�
2
Sxx(! − �!het�). (5.13)

By suitably choosing !het such that all of the structure in Sxx is away from

DC, we can measure both the Stokes and Anti-Stokes sidebands for ther-

mometry. This will be used in Chapter 6.

To measure a specific quadrature, we set !het = 0 and lock the relative

phase of the local oscillator to the signal. In this case, the homodyne of the

cavity output gives
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which again simplifies greatly in the resonant case to

S�i�i(!) ≈ 1 + 4 cos
2
✓
g
2
1

x
2

zpf

��l(!)�
2
Sxx(!). (5.15)

We can immediately see the e↵ect averaging has on the signal to noise ratio

in the heterodyne as the factor of 4 is not present. Additionally, we see that

on resonance, the mechanics couple to the phase quadrature of the light as

we would expect from the Hamiltonian we wrote initially. Compared to the

heterodyne, the Stokes and Anti-Stokes sidebands are now degenerate in fre-

quency but we can resolve the quadrature information39. This demonstrates

the utility of the two di↵erent types of detection.

5.7 Conclusion and Outlook

As a result of the trailblazing history of this apparatus many aspects can be

significantly improved using modern techniques and technology. Better cav-

ities are available, including microcavities which boast mode volumes many

orders of magnitude smaller than ours, could increase the optomechanical

coupling rate significantly. Furthermore, contemporary loading techniques

would can essentially eliminate di�culties reaching shot-noise dominated co-

operativities. Finally, the switch from an aluminum cavity mount to more

appropriate materials like Zerodur or Macor would improve lock stability.

39As a consequence of the x−motion being coupled to only the phase quadrature of the
light, we can see that the detected cavity spectrum should become flat as ✓ → 0 as we
would expect.
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Chapter 6

Coupling vs. Dissipation

Two basic elements of most quantum protocols are the preparation of a pure

quantum state and the manipulation of this state faster than the decoherence

rate of the system. In this chapter we will demonstrate how we can leverage

the coupling between a mechanical oscillator and an optical cavity to satisfy

these requirements.

Whether or not a system exchanges information slower or faster than

decoherence greatly modifies its behaviour. When the coupling is weak

compared to the dissipation, decoherence dominates the interaction and the

eigenmodes of the system are simply given by the mechanical and optical

modes. In this case the interaction can modify the properties of each sub-

system but no coherent manipulation can be performed between the two.

This weak coupling regime can however be leveraged for cooling as the high

dissipation and low e↵ective bath temperature of the optical mode can be

used to siphon energy away from the mechanical oscillator. As the coupling

increases, the system transitions to the strong coupling regime. Specifically,

once g > �4, the optical and mechanical subsystems hybridize giving rise

to new eigenmodes of the Hamiltonian. The new so-called normal modes

are linear superpositions of the photonic and phononic modes. The relevant

scales are illustrated in Figure 6.1, including those relating to the transition

rates of the system which will be discussed in the next chapter. The ability

to operate in both regimes is important for achieving full quantum control

of the system.

In this chapter, we will exclusively consider the interaction to be gen-

erated via coherent scattering discussed in Section 4.3. In terms of the
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Figure 6.1: The frequency scales for comparison with the coupling.
The coupling rate with respect to the dissipation sets the weak/strong scale
governing mode hybridization. The transition rates of the system define the
ultra/deep strong scale governing the perturbative nature of the interaction.

parameters which can be tuned in-situ,

gx(�x0)∝ P
1�4 sin ✓ sin(kx0)e−

y2
0
+z2

0

W2
cav (6.1)

Additionally, for particles with r << �, gx ∼ r
3�2. These parameters a↵ord us

considerable flexibility in tuning the coupling rate. We must also consider

that in our system  >> � for nominal background gas pressures. We there-

fore only consider the optical dissipation rate in the rest of our discussions.

A selection of the following results in the next two chapters can be found

in our recent papers: ”Cooling of a levitated nanoparticle to the motional

quantum ground state” [78] and ”Linear Ultrastrong Optomechanical Inter-

action” [79].

6.1 Weak Coupling

Let us consider the motional PSD Sxx(!) given in Equation 4.7. Setting

g = 0, we uncouple the systems and ⌫(!) = 1 which allows us to recover

the uncoupled mechanics we saw in Chapter 2 as we would expect. Then

when g < �4,⌦x�10, we can cast this equation into the same form as our
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uncoupled oscillator40 by reformulating our expression in terms of a bath

with an e↵ective occupation N̄e↵ and coupling �e↵ resulting in

Sxx(!) = x
2

zpf ��e↵��m(!)�
2
(N̄e↵ + 1) + �e↵��m(−!)�

2
N̄e↵� (6.2)
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Ne↵ ≈
�

�e↵

N̄therm + N̄shot, (6.5)
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�⌘

2
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�

⌦x
�

2

� (6.6)

and ⌘ = (�2)�⌦x quantifies the sideband resolution. Equations 6.3 and

6.4 described the so-called optical damping and optical spring e↵ects while

Equation 6.5 demonstrates the e↵ect that coupling the mechanical oscilla-

tor to the cavity has on the oscillator’s energy. We can reach a minimum

occupation of nmin =
1

2
(

�

1 + ⌘2 − 1) at an optimal detuning of �

⌦
=

�

1 + ⌘2.

For our system with  ≈ ⌦x we expect nmin ≈ 0.16
41.

In the experiment, we can scan the detuning to map out the optical

spring and dampings to reconstruct the coupling rate g as shown in Figure

6.2. One should note that the optical mode is not una↵ected by this coupling

and it also undergoes a frequency shift and modification of the damping.

Since the modes do not hybridize there is no avoided crossing however, the

two modes still repel one another as shown in Figure 6.3.

40This largely holds if we relax the constraint on g < ⌦x�10 requiring the system to not
be in the ultrastrong coupling regime. However as both of these constraints are generally
satisfied simultaneously in our system, we will retain the more stringent condition.

41Note that we have ignored other heating e↵ects in this simplified approximation. A
thorough examination with other heating contributions included has been performed[36]
and found only minor corrections to this prediction for the parameter regime available to
our experiment.
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Figure 6.2: An example of the modified spectral properties in the
weak coupling regime. While scanning the detuning we measure the
mechanical spectrum and extract the resonance ⌦e↵ and linewidth �e↵. The
joint behaviour of these two properties is then fit and the coupling rate is
extracted. This measurement was performed with a 73nm radius particle.

6.1.1 Ground State Cooling

In optomechanics we generally leverage dissipation for cooling a system with

the eventual goal of preparing the mechanical oscillator in the ground state

of motion, the more e↵ective the cooling the purer the state. This was the

subject of our paper ”Cooling of a levitated nanoparticle to the motional

quantum ground state” [50] and some of the work presented in this subsec-

tion can also be found there.

As we saw, judicious choice of the detuning and reduction of � through

the evacuation of the background gas can lead to an expected minimum

occupation of nmin < 1 indicating ground state cooling of the mechanical

oscillator should be possible. Given the gas damping model from Subsection

2.3.1 and a room temperature environment, we can see we would require a

background pressure of P < 10−6mbar to reach a ground state occupation for

a 73nm radius silica nanoparticle. As we demonstrated in Chapter 5, this is

above the base pressure of the vacuum chamber and therefore an achievable

goal.
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Figure 6.3: The analogue of the optical spring for the cavity mode.
a) The heterodyne spectra contains both the mechanical modes but also the
much broader optical mode (magnified). The full spectrum can be fit to
provide a direct measurement of the detuning. b) The frequencies of the
mechanical (faded crosses) and optical modes (blue squares) as a function
of detuning. The dashed lines illustrate the uncoupled mode frequencies.
Since the system is only weakly coupled, the modes do not hybridize and
therefore do not exhibit normal mode splitting nor an avoided crossing.
However, since the coupling is positive, they still repel each other before
ultimately crossing at � = ⌦x.

For verification of the ground state we used Raman sideband thermome-

try. Since the tweezer detection has a SNR of ∼ 30dB at a pressure of 4mbar

and the signal amplitude is proportional to the damping, we would have

a SNR ≈ −30dB when the ground state occurs which is clearly unfeasible.

Instead we take advantage of the weak coupling to also provide diagnostics

using the heterodyne detection of the coupled cavity mode. We can then

use the full model from Subsection 5.6.2 to recover Sxx(!) and therefore the

occupation Ne↵.

To resolve the ground state we collected all of the light from one side
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of the cavity42 and mixed this with a strong local oscillator such that we

operated just below saturation of the balanced detector43. To optimize the

balancing of the detection and thus the rejection of common mode noise, we

used a variable fiber beamsplitter44. This provided the additional benefit of

ensuring the signal and local oscillator were perfectly mode matched. The

signal was coupled into this fiber with > 50% coupling e�ciency. To provide

a flat noise background we used a heterodyne frequency of 10.2MHz and

collected the data using an oscilloscope45 with a sample interval of 16ns.

We used a standard 1kHz resolution bandwidth when computing the PSDs

and took enough data to average the spectra 106 times (roughly 1000s)

to reduce the shot noise variance to the point where we could discern the

cooled x-motion. The result is shown in Figure 6.4. We achieve a minimum

occupation of n̄x = 0.43 ± 0.03 resulting in the particle being in the ground

state 70±2% of the time46. The discrepancy between the achieved minimum

occupation and theoretical minimum is largely due to the finite background

pressure in the chamber. As shown in Figure 6.4c, further reduction of the

pressure results in a much closer agreement at which point photon recoil,

discussed in Subsection 2.3.4, becomes the dominant heating mechanism.

While this result opens up a new regime of macroscopic quantum free-

fall experiments, the coherence time is still too short to perform significant

42We tried coherently combining the two cavity outputs by mixing them on a polarizing
beamsplitter. Setting the two polarization of the two beams to maximize the output out
of one of the beamsplitter ports and then giving them a slight ellipticity, we were able to
use the small amount of rejected light to lock the beams together using a mirror mounted
on a piezo in one of the beam paths. This was only marginally useful as it increased the
SNR by 2.2dB but came at the cost of additional complexity and locking requirements.

43The local oscillator was set to ∼ 100µW while the signal was ∼ 1µW. We verified that
the noise floor of the resulting spectrum was set by the shot noise of the laser and not the
electronics. We additionally took background traces of both the shot noise and electronic
noise to compensate for any fluctuations over our signal area.

44Newport F-CPL-1060-N-FA
45pico Technology PicoScope 5442B
46This also corresponds to a temperature of 12.2 ± 0.5µK
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6.1. Weak Coupling

Figure 6.4: Heterodyne spectrum of the cavity output and the re-
sulting phononic occupations. a) The negative frequency Stokes (red)
and positive frequency anti-Stokes (blue) sidebands are mixed with a strong
local oscillator in a heterodyne configuration. The resulting spectrum con-
tains information about the motion of the mechanical oscillator in all 3
orthogonal directions. Only the x-mode is appreciably coupled to the opti-
cal mode and thus the z and y motion remain uncooled. The presence of
phase noise from the carrier (purple) is negligible at the relevant mechanical
frequencies. b) Magnified Stokes and anti-Stokes sidebands of the x−motion
are shown for di↵erent occupations near the ground state associated with
��2⇡ = 580 ± 10kHz (top row) and 380 ± 10kHz (bottom row). c) Phononic
occupation as a function of detuning. At the optimal detuning for cooling
we reach a minimum occupation of n̄x = 0.43 ± 0.03. Errorbars include un-
certainty in the detuning � and the cavity dissipation . The theoretical
model, including the uncertainty in the background gas pressure, is depicted
by the green band. Below the lower green line at 10−8mbar, the impact of
the background gas is negligible compared to other heating mechanisms.
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6.2. Strong Coupling

wavepacket expansion47. This can be improved by making the previously

discussed upgrades to the vacuum system. Additionally, switching from a

room temperature environment to that of a cryostat would further improve

the vacuum, decrease the bath temperature and reduce the e↵ect of black

body radiation. Unfortunately this comes at the cost of significant techno-

logical overhead. An alternative option using squeezing through the cavity

interaction will be discussed in Chapter 7.

6.2 Strong Coupling

Once g > �4, the information exchange starts to beat decoherence, the

modes hybridize, and the system transitions to the strong coupling regime.

Our approximation of Equation 4.7 to Equation 6.2 begins to break down

and we need to use the full theory. In this case, the normal modes are the

solution to

�M(⌦± + i�±)� = 0 (6.7)

where M is the coupling matrix from Equation 4.4, and ⌦± and �± are the

normal mode frequencies and dissipation rates respectively. The normal

mode frequencies are shown in Figure 6.5 as the coupling is increased. For

�4 < g << ⌦, we can write out a compact expression when � = ⌦ in which

case the normal mode frequencies are simply

⌦± ≈ ⌦
�
�
�
�
�
�

1 ±

�

�
g

⌦
�

2

− �


4⌦
�

2
�
�
�
�
�
�

��→
g>> ⌦ ± g. (6.8)

As we discussed, for g < �4 the eigenmodes of the system are just the

degenerate optical and mechanical modes and at g = �4 the new normal

modes arise and start to split. Note that the normal modes are said to not be

47With a background pressure of 10−6mbar, we estimate the maximum coherence time
in a freefall experiment to be only ∼ 1µs which would expand the wave packet from
3→ 10pm[50]. In order to fully utilize the solid nature of the nanoparticle, we would need
to expand the wavepacket beyond the size of the nanoparticle itself requiring a further
increase of 3 orders of magnitude [35].
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6.2. Strong Coupling

Figure 6.5: The eigenfrequencies of the system as g is increased. For
this model � = ⌦x = . The dashed (solid) line is the strong coupling theory
with (without) the rotating wave approximation. At g = �4 the degenerate
eigenfrequencies split and only become resolvable later when the seperation
is �2. As the coupling gets stronger, the lower eigenfrequency becomes 0
at which point the system becomes unstable. This will be elaborated upon
in Chapter 7.

resolvable until ⌦+−⌦− > �2. To understand this, we look at the projection

of the normal modes onto the mechanical basis. In this case, we can refer

back to Equation 4.7. We can then plot the spectrum as g increases as in

Figure 6.6. Even though at g = �4 the modes have hybridized, we can’t

immediately tell that there is any mode hybridization from the spectrum.

It is only until higher couplings that the new normal modes are resolvable.

At this point we can see the normal mode splitting and as g increases, the

normal mode splitting converges to 2g and acts as an immediate verification

of the coupling rate.

6.2.1 Observation of Normal Mode Splitting

The observation of normal mode splitting has previously been used to exper-

imentally verify the system is operating in the strong coupling regime[80].

Since this is a su�cient condition, we perform a similar measurement by
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6.2. Strong Coupling

Figure 6.6: Example spectra as the coupling rate g increases relative
to the dissipation in the system . Weak coupling causes the e↵ective
damping of the mechanical oscillations to increase and at g = �4 the system
transitions from the weak to the strong coupling regime. In this case, the
modes hybridize but are only resolvable at some larger coupling rate where
the di↵erence between the normal mode frequencies is larger than �2. The
resolvable curve was made when g = 0.4.

simply measuring the projection of the normal modes onto either the me-

chanical or optical subsystem through the tweezer detection or cavity de-

tection respectively. Since this e↵ect is independent of the temperature of

the oscillator, we can measure at high temperature where the SNR is large

instead of being restricted to only the cavity detection48.

48As previously discussed, the tweezer and cavity frames do not perfectly match and
therefore all 3 motional degrees of freedom couple to the cavity in some capacity. This can
make it challenging to clearly observe modifications to the spectral linewidth and fitting
is necessary to make conclusive observations. In constrast to this, although the SNR of
the tweezer detection is lower, it is easier to filter motional modes from one another. This
is advantageous for produce clear demonstrations of the modification of spectral features.
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6.2. Strong Coupling

To perform this measurement, we use a 104nm radius particle49 and

couple it to the optical cavity. For reasons discussed in the next chapter,

we do not optimally couple the particle to the cavity but instead operate at

some intermediate coupling. For this measurement, the tweezer power is set

such that ⌦x =  for simplicity.

We measure both the optical and mechanical subsystems simultaneously

to provide a full picture of the system. We use the heterodyne detection for

the optical mode, this time with sample interval of 32ns and 104 averages

with a resolution bandwidth of 500kHz. To detect the particle motion, we

use the tweezer detection with the same data acquisition parameters. We set

the three tweezer detections such that one of the radial detections is opti-

mized for the x−motion and suppresses the y−motion50. The power for this

detection is set to almost saturate the detector to maximize the SNR. The

other radial detection then uses the remaining tweezer light and is optimized

for the detection of the y−motion and suppression of the x−motion.

Inevitably, some cross talk between the mechanical modes remains in the

tweezer detection. To perform the analysis, we first take advantage of the

poor SNR of the y−detection. The x−motion is heavily suppressed below the

noise floor such that only the y− and z−motions are still visible. These are

then independently fit to extra the physical parameters ⌦y,z and �y,z. These

parameters are then used for a full model of the x−detection from which we

can then extract the coupling gx. This process is detailed in Figure 6.7. We

see great agreement between the model and the data in both detections.

To further reduce the set of free parameters, we take a measurement at

� >> ⌦x such that the systems are e↵ectively decoupled and we can fit the

x−spectrum to recover ⌦x and �x. Then the detuning is set to � = ⌦x and

the spectrum is again measured. The only physical free parameter is the

49As we saw the 71nm particle gave a coupling close to �4 and through modifying the
power we could in principle enter the strong coupling regime and resolve the normal mode
splitting. However, increasing the particle size from 71nm to 104nm should increase the
maximum coupling by ∼ 1.5 times.

50The optimization of the detection is done once the particle is already in place inside
of the cavity. Changing the particle position drastically changes the coupling to the
photodiodes and therefore the balancing and SNR.
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6.3. Conclusion and Outlook

Figure 6.7: Tweezer detection scheme for the reconstruction of the
x−motion. The y−detection (blue) is optimized such that no x−motion is
visible. A fit is then applied to recover the frequencies and dampings of
the y− and z−motion. This is then used as input into the fit of the x−

detection (green) such that the only free physical parameters correspond to
the x−motion. From the total fit, the x−contribution (red) is extracted.

coupling rate g, the rest are specifics of the detection51. The result of this

measurement can be seen in Figure 6.8. We observe a clear signature of

normal mode splitting and recover a coupling rate of g = 0.3 which is right

at the onset of the resolvable criterion. This demonstrates the ability to

beat decoherence in the manipulation of the quantum state of our system.

6.3 Conclusion and Outlook

Together, the demonstrated ability to prepare the optomechanical system in

the ground state and manipulate it faster than decoherence form the basis

for full coherent quantum control. A clear development on these results is to

51In particular, the coupling of each motion to the detection and the noise floor are free
parameters. Everything else is already fixed by independent measurements. The detuning
is measured through spectroscopy as has already been covered.
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6.3. Conclusion and Outlook

Figure 6.8: Normal mode splitting in the strong coupling regime.
The parameters of the uncoupled x−motion are fixed when the system is
e↵ectively uncoupled (upper plot). The full fit (light blue shaded) is used
to extract only the x parameters (dark blue shaded). Then the system is
coupled and tuned such that � = ⌦x (lower plot). Once again a fit is per-
formed (light purple shaded) and the normal modes are found (dark purple
shaded). We see an excellenet agreement between theory and experiment
demonstrating a clear signature of normal mode splitting.

increase the cooperativity further by increasing the coupling and decreasing

the decoherence. In addition, while the ability to quench the system by

modifying the coupling through any of the parameters in Equation 6.1 is

an interesting possibility, demonstration of both ground state cooling and

strong coupling simultaneously would be an interesting next step. To do

so would require kBT�hQ <<  << ⌦x which should be satisfied at reachable

pressures so long as the tweezer power is increased to be well sideband

resolved[81, 82].
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Chapter 7

Coupling vs. Transition

Energy

In addition to the previously demonstrated elements in our quantum control

toolbox, it is of great interest to be able to entangle our subsystems. To do so

requires we reintroduce the cross terms âb̂ and â
†
b̂
† that are neglected in the

perturbative approach to our system and the rotating wave approximation.

Of course these terms always play a role in the dynamics of the system[83]

but the level at which they do so is governed by the relationship between

the coupling rate g and the energy scale of our system ⌦52.

Due to historical precedent the system is said to enter the ultrastrong

coupling (USC) regime when g�⌦ > 0.153 Beyond this point, the Jaynes-

Cummings model breaks down and one should use the full quantum Rabi

model. When g�⌦ = 1, the interaction strength is comparable to the bare

energies of the system and this system enters the deep-strong coupling (DSC)

regime[85]. At this point the interaction begins to dominate the dynamics

of the system54. Historically, these regimes have been challenging to reach

due to the large energy scales of experimental systems and have only been

recently achieved in a handful of carefully engineered devices.

52Since the energy of the optical mode �h� is tunable and we want the optical and
mechanical modes to interact according to their susceptibilities, the energy scale is set
only by the mechanical frequency. This is in contrast to the weak-strong scale which is
almost entirely dependent on the cavity parameters.

53This threshold has no physical significance since there is no critical point for ultra-
strong phenomenon. Instead this was established following the initial observation of USC
in a GaAs doped quantum well at g�⌦ = 0.11[84].

54For completeness, we will mention the very-strong coupling (VSC) regime in which
the coupling becomes comparable to the spacing between excited states of a qubit[86, 87].
Given the harmonic oscillator nature of our system, we will ignore this regime in our
discussion.
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7.1. Ultrastrong Coupling

In this chapter, we will demonstrate how not only can the coherent-

scattering interaction reach the USC regime but that it is straightforward

to extend this to the DSC regime. Recall from Figure 6.1 that this is in-

dependent of the weak-strong coupling regimes, although in the current

experimental realization both the USC and DSC regimes coincide with the

strong coupling regime. This fact will be used to our benefit as we will see.

7.1 Ultrastrong Coupling

Only following the experimental realization of the strong coupling regime in

1983[8] did the world consider pursuing coupling regimes where perturba-

tion theory breaksdown. The first observation of the USC regime occured

just over a decade ago[4] and since then interest in larger couplings has

flourished due to the ability of such a system to mix states with di↵erent

occupations. The presence of non-negligible counter-rotating terms in the

interaction Hamiltonian no longer conserves the number of excitations in the

system. Consequently entanglement, superradiant phases and virtual exci-

tations can emerge in USC systems. Furthermore, applications for enhanc-

ing quantum metrology exist based on the modification of strong coupling

phenomena. With such a diverse set of applications, it is advantageous to

investigate the USC regime in a similarly diverse set of systems.

Before the adaptation of coherent scattering to optomechanics, optome-

chanical systems have largely been confined to the strong coupling regime55.

In our apparatus, the largest coupling previously reached through the disper-

sive interaction was g�⌦ ≈ 0.05[50] and was limited by technical limitations

on laser power. However, as the intracavity power increases, additional prob-

lems arise for investigating most interesting USC phenomena56. Comparing

estimates for the coupling rates from dispersive and coherent scattering show

an order of magnitude increase for the same drive power.

55Outside of the solid-state canon of optomechanics, single molecular vibrations have
been used to reach couplings of up to g�⌦ = 0.3[88, 7]

56Since the dispersive interaction is maximized at the slope of the intensity profile of
the standing wave, phase noise of the laser greatly impacts the coherence of the system.
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7.1. Ultrastrong Coupling

To investigate it in our system, we can use the same Equation 6.7 for the

eigenmodes of the system. For our system where  ≈ ⌦x, we will consider the

case where the system is both strongly and ultrastrongly coupled. Then we

can write a modified form of Equation 6.8 for the normal mode frequencies

⌦± = ⌦
�

�
��

1 − �


4⌦
�

2

± 2

�

�
g

⌦
�

2

− �


4⌦
�

2

. (7.1)

This modification is shown in Figure 6.5 alongside its strong coupling coun-

terpart.

7.1.1 Dynamical Instability

Recall that the modification of the mode frequencies is on the scale of g and,

as g approaches the transition frequencies, the lower transition frequency can

reach zero57. Indeed, solutions of Equation 6.7 show the damping becomes

negative at this point. The system therefore becomes dynamically unstable

and, in the case of our levitated system, the particle is lost from the optical

trap. It is well known that the source of this instability is a strong two-

mode squeezing e↵ect which amplifies the mechanical motion [89]. It has

been shown [90] that this instability occurs at a coupling of
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While not present in non-linear systems, this instability was previously

considered a detrimental feature of coupled harmonic oscillators. However,

recently it has been demonstrated that it can be harnessed to greatly en-

hance the sensing capabilities of levitated optomechanical systems [91, 35,

92–95]. One can also take advantage of the squeezing in such a way as

to overcome the short coherence time for freefall experiments and achieve

wavepacket sizes on the order of the particle radius [96]. It is therefore of

great interest to reach this instability point in our optomechanical system.

57This is only the case if the interaction does not have a diamagnetic or Hopfield term
which would act to stabilize it.
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7.2. Deep-Strong Coupling

In our system with � ≈ ⌦x ≈ , this occurs when gx�⌦x > 0.5.

7.1.2 Avoided Crossing

With our experiment, initial attempts to measure normal mode splitting

with 104nm particles in Subsection 6.2.1 resulted in immediate loss of the

particle as we approached a detuning of� = ⌦x. This suggested the coupling

could be large enough to reach instability. Therefore to characterize the

coupling rate a di↵erent approach was taken.

Since the system is operating in the strong coupling regime, we can use

the avoided crossing of the normal modes to reconstruct the coupling rate.

This then uses the same scheme as detailed in Subsection 6.2.1 but, instead

of measuring at � = ⌦x where the system is unstable, we can record the

spectra as we scan the detuning. Following Equation 7.2, we can ensure

the detuning is large enough that we can avoid losing the particle from the

tweezer.

Since we will not take measurements at � = ⌦x where the normal mode

splitting is most evident in both the optical and mechanical bases, it is

important that we fit all of the spectra together with a global model. Once

again, the only free physical parameter is the coupling and the results can

be see in Figure 7.1. We observe a maximum coupling of gx�⌦x = 0.55, well

inside the USC regime. In addition to performing the measurement with

the particle maximally coupled to the cavity, we displaced the particle away

from the cavity axis using the triaxial nanopositioner to reduce the coupling

according to Equation 6.1. In this way we can tune the system to any of the

previously mentioned coupling regimes. We have therefore demonstrated

the ability to reach the onset of instability.

7.2 Deep-Strong Coupling

Since the first demonstration of USC, researchers have sought to reach ever

larger couplings. Few systems have reached the DSC regime [5, 3, 97] since

it was first explored theoretically in 2010 [85]. It has since been shown that
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7.2. Deep-Strong Coupling

Figure 7.1: Measured normal mode frequencies (markers) and fits
(solid lines) as a function of detuning. The decoupled mode frequencies
are shown by the black dashed lines. For a weakly coupled system (g < �4)
the modes repel one-another but still cross. This phenomenon still occurs at
gx�⌦x = 0.2 and the measured mode frequencies (blue squares) are in agree-
ment with the theory. As the coupling increases the system enters the strong
coupling regime for g ≥ �4 at which point the mechanical and optical modes
hybridize, giving rise to new normal modes of the coupled system. The nor-
mal modes, when the optics and mechanics are resonant with � = ⌦x, are
split by approximately 2g and become resolvable when ⌦+ −⌦− > �2. This
occurs at gx�⌦x ≈ 0.3 (purple circles). As the coupling grows, the splitting
increases and our system exhibits the predicted dynamical instability when
gx�⌦x ≈ 0.5 (red diamonds).

exotic phenomena such as the breakdown of the Purcell e↵ect [98] emerge

in this regime. This new frontier of light-matter coupling is additionally

relevant to the previously consider instability-based protocols and therefore
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7.2. Deep-Strong Coupling

Figure 7.2: Spatial dependence of coupling via coherent scattering.
As the nanoparticle is displaced away from the cavity axis, the overlap be-
tween the dipole scatter and the cavity mode should decrease following the
cavity waist. Measured coupling rates (circles) as the particle is displaced
away from the cavity axis. The cavity waist (solid line) is plotted for refer-
ence.

we aim to increase our coupling beyond the USC regime.

To do so we can consider the e↵ect of particle size on the coupling rate.

For small particles within the Rayleigh regime, the coupling will scale as

r
3�2. This begins to breakdown at larger sizes due to two e↵ects: the equi-

librium trap position changes due to radiation pressure and the scattering

profile diverges from the dipole profile we assumed previously. Both of these

e↵ects can be computed with numerical solutions of Maxwell’s equations

using the Mie solution for the scattering profile. This decreases the coupling

rate as g ∝ 1�
�
Wx(zrad)Wy(zrad) where Wx,y(zrad) is the tweezer waist

along the x− and y− directions at the modified equilibrium position zrad.

Furthermore, our coherent scattering interaction assumes a dipole scatter-

ing profile. We can compare the full Mie solution to that of a dipole to

compute the deviation. All of these e↵ects are used to model the scaling

of the coupling with particle size shown in Figure 7.3. We can see that for

particles of r ≈ 140nm we should enter the DSC regime. Such particles can

be experimentally more challenging to work with due to their lower trap fre-
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quencies causing them to be more susceptible to low frequency noise sources,

however we have previously been able to trap similarly sized particles.

7.2.1 Z-Coupling

Since the coupling scales with the zero-point fluctuations, we expect gz�⌦z ≈

8gx�⌦x for a 105nm radius particle. This suggests that, when maximally

coupled, the z−mode should already be deep within the DSC regime.

We therefore perform the same avoided crossing measurement as for the

x−mode however we position the particle at an antinode of the cavity electric

field such that the z−coupling is maximized. Furthermore, since the lower

normal mode will be pushed towards DC where our technical noise is largest,

we increase the tweezer power from 400mW to 900mW to give ourselves

more leeway. We therefore expect a coupling of gz�⌦z ≈ 3. We perform the

scan from � = 20⌦z down to � ≈ 6⌦z at which point the z−mode already

had appreciable overlap at zero frequency. The resulting spectra from this

measurement can be seen in Figure 7.4. From the normal mode frequencies

we find gz�⌦z = 1.2.

While already in the DSC regime, this is far below the coupling we

anticipated. We note that the increase in the x−frequency suggests that

we populate the cavity with enough photons to build up an appreciable

standing wave potential. This co-trapping of the particle by the cavity

is generated by a quadratic term in the Hamiltonian which should take

the same form as the previously discussed Hopfield term. In this case the

measured normal mode frequency is higher than expected from the purely

linear interaction, suggesting we are underestimating the coupling. Whether

or not this additional quadratic potential is enough to stabilize the system

is currently unknown and warrants further study.

To take advantage of the high z−coupling, we would also desire that the

z−mode is strongly coupled to the cavity mode. Since ⌦z = 75kHz we see that

gz� > 0.46 demonstrating it too operates in the SC regime. Furthermore,

the splitting is given by ⌦+−⌦− ≈ 2gz ≥ 2×1.2⌦z = 180kHz > �2, the normal
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Figure 7.3: Modeling of how the coherent scattering coupling scales
with particle size. We compute the deviation of the Mie solution from an
ideal dipole (top). We see good agreement between the two solutions even
up to particles with radii r ≈ 200nm. We also model the e↵ect of radiation
pressure on the equilibrium trap frequencies mentioned in Subsection 2.1.3
for the x− and z−modes (middle). This was done for the system tweezer
parameters given in Subsection 5.3.3. Both of these e↵ects give estimates
for the scaling of the coupling with particle size (bottom). The x−mode
should enter the DSC regime for particles of radius r ≈ 140nm where the
Mie solution deviates from the dipole approximation by a few percent. The
e↵ect of this deviation is given by the shaded region of the estimates as
a full calculation of the higher order couplings would be required to more
precisely predict the scaling.
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Figure 7.4: Spectra from an avoided crossing measurement of the
z−mode. We scan the detuning from 2MHz down to 500kHz with ⌦z =

75kHz. From the trend of the lower normal mode frequency we estimate
gz�⌦z = 1.2. In the same spectra we see that for all but the closest detunings,
the x−mode is shifted up in frequency. This is attributed to the buildup of
the cavity mode population since the maximal coupling for z is away from
the cavity field node.

mode splitting should be resolvable58. Unfortunately, due to the di↵erent

coupling position along the standing wave, phase noise heating presents a

large technical challenge for leveraging this interaction e↵ectively.

58This is a technically challenging task since the mixing between the optical and me-
chanical modes is maximized at � = ⌦ which is well below the instability threshold in this
case.
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7.3 Conclusion and Outlook

We have demonstrated that conventional optomechanical systems can reach

both the USC and DSC regimes through the coherent scattering interaction.

The parameters used in the apparatus to achieve the maximum observed

coupling rates of gx�⌦x = 0.55 and gz�⌦z = 1.2 can easily be improved upon

with contemporary technology.

An interesting avenue to explore would be the transition from a macro-

scopic cavity to a microcavity. Since g ∝ 1�
√
Vcav amd state-of-the-art mi-

crocavities boast mode volumes of Vcav ∼ 1−100µm
3 compared to our cavity

with Vcav ≈ 10
7
µm3, we expect improvements by up to 4 orders of magnitude

in the coupling. For these cavities, typical linewidths are ∼ 1−100MHz which

would require we greatly increase the trap frequencies to continue operating

in the resolved sideband regime. This would be most easily done by using

another cavity mode to trap the particle either through pumping the cavity

or co-trapping through coherent scattering. This would have the added ad-

vantage of reducing di↵erential shifts in the tweezer position relative to the

cavity mode causing drifts in the coupling.

Besides building on these results for measuring squeezing of the mechan-

ical motion, it has also been predicted that the system would automatically

be entangled[99]. In this case, correlations between the mechanical and opti-

cal quadratures could be used as an entanglement witness without significant

modifications of the experimental apparatus.
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Appendix A

Calculations & Derivations

A.1 Thermal Mechanical Oscilator in Classical

Mechanics

A.1.1 Homogeneous Equation Ansatz

Our equation of motion is

ẍ(t) + �ẋ(t) +⌦2

xx(t) = 0 (A.1)

Our ansatz is

x(t) = x0e
−�t cos(↵t) (A.2)

for some constants ↵ and �. Plugging this in, we get

0 = �(�2
− ↵

2
) cos(↵t) + 2↵� sin(↵t)�x0e

−�t
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(A.3)
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x) cos(↵t) + (2↵� − ↵�) sin(↵t). (A.4)

From the sinusoidal terms, we can identify that � = ��2 and then

0 = �2
− ↵

2
− �� +⌦2

x, (A.5)

= �
�

2
�

2

− ↵
2
− �

�

2
+⌦2

x, (A.6)

�⇒ ↵ =

�

⌦2
x − �

�

2
�

2

, (A.7)

= ⌦x

�

1 −
1

(2Q)2
(A.8)

111



A.1. Thermal Mechanical Oscilator in Classical Mechanics

where Q = ⌦x�� is called the mechanical quality factor.

A.1.2 Inhomogeneous Equation Ansatz

Our equation of motion is

ẍ(t) + �ẋ(t) +⌦2

xx(t) =
1

m
�

i

Fi(t). (A.9)

We can solve this second order ordinary di↵erential equation by working in

Fourier space. To do so, we note that

x̃(!) = F [x(t)] (A.10)

= �

∞
−∞ x(t)e

i!t
dt (A.11)

x(t) = F
−1
[x̃(!)] (A.12)

=
1

2⇡ �
∞
−∞ x̃(!)e

−i!t
d! (A.13)

F [ẋ(t)] = F �
@

@t
F
−1
[x̃(!)]�

= F �
@

@t

1

2⇡ �
∞
−∞ x̃(!)e

−i!t
d!�

= F �
1

2⇡ �
∞
−∞ x̃(!)

@

@t
e
−i!t

d!�

= F �
1

2⇡ �
∞
−∞ x̃(!)(−i!)e

−i!t
d!�

= −i!x̃(!) (A.14)

F [ẍ(t)] = −!
2
x̃(!) (A.15)

F̃i(!) = F [Fi(t)] (A.16)

The Fourier transform of the equation of motion is then

�−!
2
− i�! +⌦2

x� x̃(!) =
1

m
�

i

F̃i(!). (A.17)
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We can introduce the mechanical susceptibility

�m(!) =
1

⌦2
x − !

2 − i�!
(A.18)

to write the equation of motion more succinctly

x̃(!) =
�m(!)

m
�

i

F̃i(!). (A.19)

A.1.3 PSD

The power spectral density of some signal x(t) is defined as

Sxx(!) = lim
⌧→∞

1

⌧
���

⌧�2
−⌧�2 x(t)e

i!t
dt�

2

� . (A.20)

Put in terms of Fourier space, this becomes

Sxx = lim
⌧→∞

1

⌧
���

⌧�2
−⌧�2

1

2⇡ �
∞
−∞ x̃(!

′
)e
−i!′t

d!
′
e
i!t

dt�

2

� (A.21)

= lim
⌧→∞

1

(2⇡)2⌧
���

∞
−∞ x̃(!

′
)�

⌧�2
−⌧ e

i(!−!′)t
dtd!�

2

� (A.22)

= lim
⌧→∞

1

(2⇡)2⌧
���

∞
−∞ x̃(!

′
)�

∞
−∞ h⌧(t)e

i(!−!′)t
dtd!

′
�

2

� (A.23)

= lim
⌧→∞

1

(2⇡)2⌧
���

∞
−∞ x̃(!

′
)h̃⌧(! − !

′
)d!

′
�

2

� (A.24)

= lim
⌧→∞

1

(2⇡)2⌧
��(x̃ ∗ h̃⌧)(!)�

2

� (A.25)
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where

h⌧(t) =

�
�����
�
�����
�

1 �t� < ⌧�2

1�2 �t� = ⌧�2

0 otherwise

(A.26)

�⇒ h̃⌧(!) = F [h⌧(t)] (A.27)

= �

∞
−∞ h⌧(t)e

i!t
dt (A.28)

= �

⌧�2
−⌧�2 e

i!t
dt (A.29)

=
1

i!
�e

i!⌧�2
− e
−i!⌧�2

� (A.30)

= ⌧sinc(!⌧�2). (A.31)

If we now expand Equation A.24 we can see that

Sxx = lim
⌧→∞

1

(2⇡)2⌧
��

∞
−∞ �

∞
−∞ x̃(!

′
)x̃
∗
(!
′′
)h̃⌧(! − !

′
)h̃
∗
⌧(! − !

′′
)d!

′
d!
′′
� .

(A.32)

We can rewrite this expression with the force terms as follows

Sxx = lim
⌧→∞

1

(2⇡)2⌧
��

∞
−∞ �

∞
−∞ h̃⌧(! − !

′
)h̃
∗
⌧(! − !

′′
)
�m(!

′
)�
∗
m(!

′′
)

m2
�

i,j

F̃i(!
′
)F̃
∗
i (!

′′
)d!

′
d!
′′
� .

(A.33)

We will restrict our attention to the case where Fi(t) is some white noise

Ni(t) with

�Ni(t)Nj(t
′
)� = SNi�ij�(t − t

′
) (A.34)

�⇒ �Ñi(!)Ñj(!
′
)� = �

∞
−∞ �

∞
−∞ SNi�ij�(t − t

′
)e

i!t
e
i!′t′

dtdt
′ (A.35)

= SNi�ij �

∞
−∞ e

i!t
e
i!′t

dt (A.36)

= 2⇡SNi�ij�(! + !
′
) (A.37)
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where SNi is the Noise Power Spectrum Density. Furthermore, we should

remember that Ñ∗i (!) = Ñi(−!). Then using this, we see that

Sxx = lim
⌧→∞

1

(2⇡)2m2⌧
�

∞
−∞ �

∞
−∞ h̃⌧(! − !

′
)h̃
∗
⌧(! − !

′′
)�m(!

′
)�
∗
m(!

′′
)�

i,j

2⇡SNi�ij�(!
′
− !
′′
)d!

′
d!
′′

(A.38)

= lim
⌧→∞

∑i SNi

2⇡m2⌧
�

∞
−∞ �

∞
−∞ h̃⌧(! − !

′
)h̃
∗
⌧(! − !

′′
)�m(!

′
)�
∗
m(!

′′
)�(!

′
− !
′′
)d!

′
d!
′′

(A.39)

= lim
⌧→∞

∑i SNi

2⇡m2⌧
�

∞
−∞ h̃⌧(! − !

′
)h̃
∗
⌧(! − !

′
)�m(!

′
) ��m(!)�

2
d!
′ (A.40)

= lim
⌧→∞

∑i SNi

2⇡m2⌧
�

∞
−∞ �⌧sinc�

(! − !
′
)⌧

2
��

2

��m(!)�
2
d!
′ (A.41)

We can then use the fact that

lim
⌧→∞ ⌧sinc2(⌧!�2) = 2⇡�(!) (A.42)

to simplify this further

Sxx =
∑i SNi

2⇡m2 �

∞
−∞ 2⇡�(! − !′)�m(!

′
)�
∗
m(!

′
)d!

′ (A.43)

=
��m(!)�

2

m2
�

i

SNi . (A.44)

We can then consider the total power in the spectrum due to these noise

terms. In this case

�

∞
−∞ Sxx(!)d! = �

∞
−∞
��m(!)�

2

m2
�

i

SNid! (A.45)

=
∑i SNi

m2 �

∞
−∞

1

(⌦2
x − !

2)2 + �2!2
d! (A.46)

=
∑i SNi

m2

⇡

�⌦2
x
. (A.47)

115



A.1. Thermal Mechanical Oscilator in Classical Mechanics

Alternatively, we can show that

�

∞
−∞ Sxx(!)d! = �

∞
−∞ lim

⌧→∞
1

⌧
���

⌧�2
−⌧�2 x(t)e

i!t
dt�

2

�d! (A.48)

= �

∞
−∞ lim

⌧→∞
1

⌧
��

⌧�2
−⌧�2 �

⌧�2
−⌧�2 x(t)e

i!t
x
∗
(t
′
)e
−i!t′

dtdt
′
�d!

(A.49)

= lim
⌧→∞

1

⌧
�

⌧�2
−⌧�2 �

⌧�2
−⌧�2 �x(t)x(t

′
)��

∞
−∞ e

i!(t−t′)
d!dtdt

′ (A.50)

= lim
⌧→∞

1

⌧
�

⌧�2
−⌧�2 �

⌧�2
−⌧�2 �x(t)x(t

′
)�2⇡�(t − t′)dtdt′ (A.51)

= lim
⌧→∞

2⇡

⌧
�

⌧�2
−⌧�2 �x(t)

2
�dt. (A.52)

Then, if these noise terms obey the Fluctuation Dissipation Theorem, then

we may use the Equipartition Theorem for a harmonic oscillator to write

1

2
kBT =

1

2
m⌦2

x �x(t)
2
� (A.53)

and therefore we see that

�

∞
−∞ Sxx(!)d! = lim

⌧→∞
2⇡

⌧
�

⌧�2
−⌧�2

kBT

m⌦2
x
dt (A.54)

= 2⇡
kBT

m⌦2
x
. (A.55)

We can then put Equation A.47 and Equation A.55 together which gives us

∑i SNi

m2

⇡

�⌦2
m
= 2⇡

kBT

m⌦2
x

(A.56)

�⇒ �

i

SNi = 2�mkBT. (A.57)
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A.2 Thermal Mechanical Oscilator in Quantum

Mechanics

A.2.1 Caldeira-Leggett Equation of Motion

We can write our Hamiltonian as

Ĥ =
p̂
2

2m
+
1

2
m⌦2

xx̂
2
+�

i

p̂
2

i

2mi
+�

i

1

2

C
2

i

mi⌦2

i

�x̂ −
mi⌦

2

i

Ci
x̂i�

2

(A.58)

where x̂i, p̂i, Ci, mi, and ⌦i,are the position, momenta, coupling constants,

masses and oscillator frequencies of the bath operators. We can then derive

the equations of motion for our operators

dx̂

dt
=

i

�h
�Ĥ, x̂� =

i

2m�h
�p̂

2
, x̂� =

p̂

m
, (A.59)

dp̂

dt
=

i

�h
�Ĥ, p̂� =

i

2�h
m⌦2

x �x̂
2
, p̂� +

i

2�h
�

i

C
2

i

mi⌦2

i

�
�
�
�
�
�

�x̂ −
mi⌦

2

i

Ci
x̂i�

2

, p̂

�
�
�
�
�
�

= −m⌦2

xx̂ −�
i

C
2

i

mi⌦2

i

�x̂ −
mi⌦

2

i

Ci
x̂i� ,

(A.60)

dx̂i

dt
=

i

�h
�Ĥ, x̂i� =

p̂i

mi
, (A.61)

dp̂i

dt
=

i

�h
�Ĥ, p̂i� =

i

2�h

C
2

i

mi⌦2

i

�
�
�
�
�
�

�x̂ −
mi⌦

2

i

Ci
x̂i�

2

, p̂i

�
�
�
�
�
�

= Ci �x̂ −
mi⌦

2

i

Ci
x̂i� .

(A.62)

We can put these together to get

0 =m¨̂x +m⌦2

xx̂ +�
i

C
2

i

mi⌦2

i

x̂ −Cix̂i, (A.63)

0 =mi
¨̂xi +mi⌦

2

i x̂i −Cix̂. (A.64)
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We can solve Equation A.64 in the Laplace domain. In which case, Equation

A.64 becomes

0 =miL�
¨̂xi� (!) +mi⌦

2

iL{x̂i} (!) −CiL{x̂} (!), (A.65)

=mi �!
2 ˜̂xi(!) − !x̂i(0) − ˙̂xi(0)� +mi⌦

2

i
˜̂xi(!) −Ci

˜̂x(!), (A.66)

�⇒ ˜̂xi(!) =
!

!2 +⌦2

i

x̂i(0) +
⌦i

!2 +⌦2

i

˙̂xi(0)

⌦i
+ �1 −

!
2

!2 +⌦2

i

� ˜̂x(!)
Ci

mi⌦2

i

,

(A.67)

�⇒ x̂i(t) = cos(⌦it)x̂i(0) + sin(⌦it)
˙̂xi(0)

⌦i
+

Ci

mi⌦2

i

�x̂(t) −L
−1
�

!
2

!2 +⌦2

i

˜̂x(!)�� ,

(A.68)

= x̂
(0)
i (t) +

Ci

mi⌦2

i

�x̂(t) −
d

dt
L
−1
�

!

!2 +⌦2

i

˜̂x(!)�� , (A.69)

= x̂
(0)
i (t) +

Ci

mi⌦2

i

�x̂(t) −
d

dt
L
−1
�L{cos(⌦it)}

˜̂x(!)�� , (A.70)

= x̂
(0)
i (t) +

Ci

mi⌦2

i

�x̂(t) −
d

dt
�

t

0

cos(⌦i(t − t
′
))x̂(t

′
)dt
′
� , (A.71)

= x̂
(0)
i (t) +

Ci

mi⌦2

i

�x̂(t) −
d

dt
�

t

−∞ cos(⌦i(t − t
′
))x̂(t

′
)dt
′
� ,

(A.72)

where we have introduced

x̂
(0)
i (t) = x̂i(0) cos(⌦it) +

p̂i(0)

mi⌦i
sin(⌦it) (A.73)

for ease of use. Also note in the last step I extended the range of integration

from [0, t] → (−∞, t]. As we will see later, this makes no di↵erence in our

treatment but does serve to unify di↵erent version of this calculation. If we

plug x̂i into Equation A.63, we get

0 =m¨̂x+m⌦2

xx̂−�
i

Cix̂
(0)
i (t)+

d

dt
�

t

−∞�i
C

2

i

mi⌦2

i

cos(⌦i(t−t
′
))x̂(t

′
)dt
′
. (A.74)
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We will now focus on the last term. Let us call µ(t) = ∑i
C2

i

mi⌦
2

i
cos(⌦it) our

memory kernel.The memory kernel is labelled as such as it sets quantifies

the influence of past bath interactions on the current particle motion and

in this was sets the time scale over which the bath force decorrelates. If we

call ki = C
2

i �mi⌦
2

i , we can make the change from a discrete to a continuous

representation of the memory kernel by introducing a density function ⇢(⌦)

in which case

µ(t) =�

i

ki cos(⌦it) = �

∞
0

d⌦⇢(⌦)k(!) cos(⌦t). (A.75)

We will then shift the derivative inside the integral using the Leibniz integral

rule in which case

d

dt
�

t

−∞ µ(t − t
′
)x̂(t

′
)dt
′
= �

t

−∞
@

@t
�µ(t − t

′
)x̂(t

′
)�dt

′
+ �µ(t − t

′
)x̂(t

′
)
d

dt
t��

t′=t ,
(A.76)

= �

t

−∞
@

@t
�µ(t − t

′
)x̂(t

′
)�dt

′
+ µ(0)x̂(t). (A.77)
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To proceed, we’ll make a change of variables to u = t − t
′ in which case

d

dt
�

t

−∞ µ(t − t
′
)x̂(t

′
)dt
′
= �

0

∞ �
@u

@t

@

@u
µ(u)� x̂(t − u)�

du

dt′�
−1

du + µ(0)x̂(t),

(A.78)

= �

∞
0

�
@

@u
µ(u)� x̂(t − u)du + µ(0)x̂(t), (A.79)

= µ(u)x̂(t − u)�
u=∞
u=0 −�

∞
0

µ(u)�
@

@u
x̂(t − u)�du + µ(0)x̂(t),

(A.80)

= lim
u→∞µ(u)x̂(−u) −�

∞
0

µ(u)�
@

@u
x̂(t − u)�du,

(A.81)

= −�

∞
0

µ(u)�
@

@u
x̂(t − u)�du, (A.82)

= −�

−∞
t

µ(t − t
′
)�

@t
′

@u

@

@t′ x̂(t
′
)��

dt
′

du
�

−1
dt
′
,

(A.83)

= �

t

−∞ µ(t − t
′
) ˙̂x(t′)dt′. (A.84)
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To proceed, we will work in the Fourier domain.

F ��

t

−∞ µ(t − t
′
) ˙̂x(t′)dt′� = F ��

∞
−∞ ⇥(t − t′)µ(t − t′) ˙̂x(t′)dt′� , (A.85)

= F ��[⇥µ] ∗ ˙̂x� (t)� , (A.86)

= F {⇥µ]}F � ˙̂x� , (A.87)

= (F {⇥} ∗F {µ}) (!)F � ˙̂x� , (A.88)

= �

∞
0

d⌦⇢(⌦)k(⌦) (F {⇥} ∗F {cos⌦t}) (!)(−i! ˜̂x(!)),

(A.89)

= −i! ˜̂x�
∞

0

d⌦⇢(⌦)k(⌦)�
∞
−∞ d!

′
�
�(! − !

′
)

2
+

i

! − !′ � �
�(!

′
−⌦) + �(!′ +⌦)

2
� ,

(A.90)

=
−i

2
! ˜̂x�

∞
0

d⌦⇢(⌦)k(⌦)�
�(! −⌦)

2
+

i

! −⌦
+
�(! +⌦)

2
+

i

! +⌦
� ,

(A.91)

=
−i

2
! ˜̂x �

⇢(!)k(!)

2
+�

∞
0

d⌦⇢(⌦)k(⌦)�
i

! −⌦
+

i

! +⌦
�� ,

(A.92)

=
−i

2
! ˜̂x �

⇢(!)k(!)

2
+
2i

!
�

∞
0

d⌦⇢(⌦)k(⌦)
1

1 − (⌦�!)2
� ,

(A.93)

≈ �−i!
⇢(!)k(!)

4
+�

∞
0

d⌦⇢(⌦)k(⌦)� ˜̂x(!),

(A.94)

= [−im!�̃(!) + kbath]
˜̂x(!), (A.95)

where we have just labelled �̃(!) = ⇢(!)k(!)�4m and kbath = ∫
∞
0

d⌦⇢(⌦)k(⌦).

In principle we should extend kbath → kbath(!) as well to account for all the

terms in the integral but we usually consider the bath to fall o↵ at some

energy in which case our approximation stands for non-DC phenomena. We
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now invert this Fourier transform to arrive at

d

dt
�

t

−∞�i
C

2

i

mi⌦2

i

cos(⌦i(t − t
′
))x̂(t

′
)dt
′
≈ F

−1
�[−im!�̃(!) + kbath]

˜̂x� (t),

(A.96)

= kbathx̂(t) + (� ∗
˙̂x)(t), (A.97)

= kbathx̂(t) +�

t

−∞ �(t − t
′
) ˙̂x(t′)dt′,

(A.98)

where I have set the upper bound on the convolution to t so that future

interactions don’t backpropagate in time and break causality. We can then

substitute this back into Equation A.74 and find that

F (t) =m¨̂x +m⌦′x2x̂ + kbathx̂ +�
t

−∞ �(t − t
′
) ˙̂x(t′)dt′, (A.99)

where I have defined F (t) = ∑iCix̂
(0)
i (t) and ⌦′x2 = ⌦2

x + kbath�m. We

can now see that the e↵ect of the memory kernel is to shift the oscillator

frequency as well as damp its motion. If we make the first Markov approxi-

mation [42] �(t) = ��(t), then we recover the classical form for the oscillator

F (t) =m¨̂x +m⌦′x2x̂ + � ˙̂x, (A.100)

albeit with a shifted frequency. This approximation removes any memory

in the bath which results in our white-noise process as expected.
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Appendix B

Tight Focusing

Following [100], we find the field of an arbitrarily polarized guassian beam

just after it passes through a microscope objective is

�E∞(✓,�) =
�

�
�
�

�

�Ein(✓,�) ⋅

�
�
�
�
�
�
�
�
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0

�
�
�
�
�
�
�
�

�

�
�
�

�

⋅

�
�
�
�
�
�
�
�
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0

�
�
�
�
�
�
�
�

√

cos ✓ +

�

�
�
�

�
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�
�
�
�
�
�
�
�
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= � �Ein(✓)�

√
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�
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�
�
�
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2
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�
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(B.2)

where we are working in spherical coordinates and ei = î ⋅
�Ein� �Ein� is the compo-

nent of the polarization along the i-th direction. Interestingly, we see that

in principle, we can have a component along the propagation of the beam

which is typically not present in paraxial optics. I have also removed the

dependence of the incoming electric field on � since we are dealing with a

gaussian beam which is cylindrically symmetric. If we then propagate this

field to the focal plane of the microscope objective, we can write out the

electric field in cylindrical coordinates as

�E(⇢,�, z) =
ikf

2⇡
e
−ikf
�

✓max

0
�

2⇡

0

E∞(✓′,�′)eikz cos ✓′eik⇢ sin ✓′ cos(�′−�) sin ✓′d�′d✓′,
(B.3)

where ✓max = sin
−1
(NA) relates the size of the lens to the maximal ray angle.
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We can do this integral by noting that

1

2⇡ �
2⇡

0

cosn�eix cos(�′−�)
d�
′
= i

n
Jn(x) cosn�, (B.4)

1

2⇡ �
2⇡

0

sinn�eix cos(�′−�)
d�
′
= i

n
Jn(x) sinn� (B.5)

where Jn are Bessel functions of the first kind. Then
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�E(⇢,�, z) = ikfe
−ikf
�

✓max

0

� �Ein(✓
′
)�

√

cos ✓′eikz cos ✓′ sin ✓′ �I�(✓′)d✓′,

(B.6)
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e
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exI0(⇢, z) + (ex cos 2� + ey sin 2�)I2(⇢, z)
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−2i(ex cos� + ey sin�)I1(⇢, z)

�
�
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�
�
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(B.11)

I0(⇢, z) = �

✓max

0

� �Ein(✓
′
)�

√

cos ✓′(1 + cos ✓′)J0(k⇢ sin ✓′)eikz cos ✓′ sin ✓′d✓′,
(B.12)

I1(⇢, z) = �

✓max

0

� �Ein(✓
′
)�

√

cos ✓′J1(k⇢ sin ✓′)eikz cos ✓′ sin2 ✓′d✓′,
(B.13)

I2(⇢, z) = �

✓max

0

� �Ein(✓
′
)�

√

cos ✓′(1 − cos ✓′)J2(k⇢ sin ✓′)eikz cos ✓′ sin ✓′d✓′.
(B.14)
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To simplify things further, we can numerically integrate these terms.

However, to get a more satisfying result, we will expand these integrals in

powers of ⇢ and z. First, we will note that if we take a gaussian beam and

overfill the aperture of the lens we can write the incoming field as

� �Ein(✓)� = E0e
− f2

w2
0

sin
2 ✓
= E0e

− 1

f2
0

sin
2 ✓

sin2 ✓max = E0fw(✓) (B.15)

where f0 =
w0

f sin ✓max
is the filling factor of the lens with ✓max = sin

−1NA and

fw(✓) is called the apodization function. We can then expand the bessel

functions in powers of ⇢ as

J↵(x) =

∞
�

�=0
(−1)�

�!(↵ + �)!
�
x

2
�

↵+2�
, (B.16)

�⇒ J0(x) ≈ 1 − �
x

2
�

2

, (B.17)

�⇒ J1(x) ≈
x

2
, (B.18)

�⇒ J2(x) ≈
1

2
�
x

2
�

2

. (B.19)
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Lastly, we can expand the exponentials in powers of z to get

I0(⇢, z) ≈ E0�

✓max

0

fw(✓)
√
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�
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�
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2
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(B.20)
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⇢
2
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2
z
2
� , (B.21)
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⇢z� , (B.23)
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≈ E0 �i6k
2
⇢
2
� , (B.25)

(B.26)

where
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0
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√
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i

2 �
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√
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i6 =
1

8 �
✓max

0
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√

cos ✓′(1 − cos ✓′) sin3 ✓′d✓′. (B.33)
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Putting this all together, we get that

�E(⇢,�, z) =
ikf
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−ikf
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(B.34)

Using Equation 2.4 we can write out the potential up to the quadratic terms

to get

U(⇢, z) = −
1

2
↵� �E(⇢,�, z)�

2 (B.35)
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We can switch to cartesian coordinates with x = ⇢ cos� and y = ⇢ sin� which

gives
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We can then identify our mechanical frequencies as

!x =

�

�
��

↵P0

mnc✏0

k2f2

⇡w
2

0

((�ey �
2 − �ex�
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(�ey �
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k
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�

↵P0
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2)i0i6 − i0i1 − 2�ey �2i24)
k
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!z =

�

↵P0

m⇡nc✏0

1

2
(−2i0i3 − �i2�2)

k
2

f0NA
. (B.42)

Note how the degeneracy of !x and !y is now broken depending on the

polarization of the incoming light field. This has important consequences

later as we try to selectively interact with a single mechanical mode.
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Linear Coupling Solution

Let us assume the Hamiltonians governing the mechanics and optics to be

that of Equations 2.21 and 3.10. Let us then assume they are linearly coupled

through the Hamiltonian

Ĥlinear ≈
�hg �b̂ + b̂

†
� �â + â

†
� . (C.1)

The equations of motion for our system operators become

˙̂a ≈ −�


2
+ i�′� â +√âIn − ig �b̂ + b̂†� (C.2)

˙̂
b ≈ −�

�

2
+ i⌦′x� b̂ +√�b̂In − ig �â + â†

� (C.3)

where I have switched to an input-output formalism for the mechanics after

we showed the dynamics to be the same. We can easily solve these cou-

pled Langevin equations in the Fourier domain whereby we can encode this

system of equations into the linear form

�

�
�
�
�
�

�

√
�l(!)ãIn(!)
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and inverting this gives
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where ⌫(!) =
1

1+g2(�l(!)−�∗l (−!))(�m(!)−�∗m(−!)) . Note that ⌫(!) = ⌫
∗
(−!).

We compute all of the correlation terms.

�ã(!)ãIn(!
′
)� = 0 (C.6)

�ã
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(!)ã(!

′
)� = �⌫(!)�

2
��l(−!)�

2
�g

4
��l(!)�

2
��m(!) − �

∗
m(−!)�

2


+ g
2
� ���m(!)�

2
(N̄ + 1) + ��m(−!)�

2
N̄�� �(! + !

′
) (C.18)

�b̃(!)b̃(!
′
)� = g

2
���m(!)�

2
�m(−!) [�

∗
l (!) − �l(−!)] (N̄ + 1)�⌫(!)�

2
�(! + !

′
)

− g
2
���m(−!)�

2
�m(!) [�l(!) − �

∗
l (−!)] N̄ �⌫(!)�

2
�(! + !

′
)

− g
2
�m(!)�m(−!)��l(!)�

2
�⌫(!)�

2
�(! + !

′
)

− g
4
���m(!)�

2
��m(−!)�

2
��l(!) − �

∗
l (−!)�

2
(2N̄ + 1)�⌫(!)�2�(! + !′)

(C.19)

�b̃
†
(!)b̃

†
(!
′
)� = g

2
���m(!)�

2
�
∗
m(−!) [�l(!) − �

∗
l (−!)] (N̄ + 1)�⌫(!)�

2
�(! + !

′
)

− g
2
���m(−!)�

2
�
∗
m(!) [�

∗
l (!) − �l(−!)] N̄ �⌫(!)�

2
�(! + !

′
)

− g
2
�
∗
m(!)�

∗
m(−!)��l(!)�

2
�⌫(!)�

2
�(! + !

′
)

− g
4
���m(!)�

2
��m(−!)�

2
��l(!) − �

∗
l (−!)�

2
(2N̄ + 1)�⌫(!)�2�(! + !′)

(C.20)

�b̃(!)b̃
†
(!
′
)� = ���m(!)�

2
(N̄ + 1)�⌫(!)�2�(! + !′)

− g
2
���m(!)�

2
�m(−!) [�

∗
l (!) − �l(−!)] (N̄ + 1)�⌫(!)�

2
�(! + !

′
)

− g
2
���m(!)�

2
�
∗
m(−!) [�l(!) − �

∗
l (−!)] (N̄ + 1)�⌫(!)�

2
�(! + !

′
)

+ g
2
��m(!)�

2
��l(!)�

2
�⌫(!)�

2
�(! + !

′
)

+ g
4
���m(!)�

2
��m(−!)�

2
��l(!) − �

∗
l (−!)�

2
(2N̄ + 1)�⌫(!)�2�(! + !′)

(C.21)

133



Appendix C. Linear Coupling Solution

�b̃
†
(!)b̃(!

′
)� = ���m(−!)�

2
N̄ �⌫(!)�

2
�(! + !

′
)

+ g
2
��
∗
m(!)��m(−!)�

2
[�
∗
l (!) − �l(−!)] N̄ �⌫(!)�

2
�(! + !

′
)

+ g
2
��m(!)��m(−!)�

2
[�l(!) − �

∗
l (−!)] N̄ �⌫(!)�

2
�(! + !

′
)

+ g
2
��m(−!)�

2
��l(!)�

2
�⌫(!)�

2
�(! + !

′
)

+ g
4
���m(!)�

2
��m(−!)�

2
��l(!) − �

∗
l (−!)�

2
(2N̄ + 1)�⌫(!)�2�(! + !′)

(C.22)

�x̃(!)x̃(!
′
)� = x

2

zpf ��b̃(!)b̃(!
′
)� + �b̃(!)b̃

†
(!
′
)� + �b̃

†
(!)b̃(!

′
)� + �b̃

†
(!)b̃

†
(!
′
)��

(C.23)

= x
2

zpf�(! + !
′
)�⌫(!)�

2
����m(!)�

2
(N̄ + 1) + ���m(−!)�

2
N̄

+g
2
��m(!) − �

∗
m(−!)�

2
��l(!)�

2
� (C.24)

If we then consider we are detecting the light from the output mode of the

cavity then we need to look at the correlators
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†
(!
′
)� −
√
1 �ãIn,1(!)ã

†
(!
′
)� −
√
1 �ã(!)ã
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(!)ãIn,1(!

′
)� +

⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:0
�ã
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†
(!)ã
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Since all of our correlators include a �(!+!
′
) term, we can express our PSD
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Note that lim⌧→∞ ⌧sinc2(x⌧) = ⇡�(x) so we can simplify the first two terms.

We will then consider two cases, homodyne where �LO = 0 and a heterodyne

of su�cient length ⌧ such that the overlap of the sinc functions in the last

two terms is 0. In the homodyne case we have
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In the heterodyne case we have
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[18] V. Vuletić and S. Chu. Laser cooling of atoms, ions, or molecules

by coherent scattering. Phys. Rev. Lett., 84:3787–3790, Apr 2000.

doi:10.1103/PhysRevLett.84.3787.

[19] D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter,

H. J. Kimble, and P. Zoller. Cavity opto-mechanics using an opti-

cally levitated nanosphere. Proceedings of the National Academy of

Sciences, 107(3):1005–1010, 2010. doi:10.1073/pnas.0912969107.

[20] O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel,

M. Aspelmeyer, and J. I. Cirac. Large quantum superpositions and

interference of massive nanometer-sized objects. Phys. Rev. Lett.,

107:020405, Jul 2011. doi:10.1103/PhysRevLett.107.020405.

[21] A. Ashkin. Acceleration and trapping of particles by ra-

diation pressure. Phys. Rev. Lett., 24:156–159, Jan 1970.

doi:10.1103/PhysRevLett.24.156.

[22] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov. Optical dipole

traps for neutral atoms. volume 42 of Advances In Atomic, Molec-

ular, and Optical Physics, pages 95 – 170. Academic Press, 2000.

doi:10.1016/S1049-250X(08)60186-X.

140

http://dx.doi.org/10.1007/BF01828949
http://dx.doi.org/10.1103/PhysRevLett.122.123602
http://dx.doi.org/10.1103/PhysRevLett.122.123601
http://dx.doi.org/10.1103/PhysRevLett.84.3787
http://dx.doi.org/10.1073/pnas.0912969107
http://dx.doi.org/10.1103/PhysRevLett.107.020405
http://dx.doi.org/10.1103/PhysRevLett.24.156
http://dx.doi.org/10.1016/S1049-250X(08)60186-X


Bibliography

[23] H. Son, J. J. Park, Y.-K. Lu, A. O. Jamison, T. Karman, and W. Ket-

terle. Control of reactive collisions by quantum interference. Science,

375(6584):1006–1010, 2022. doi:10.1126/science.abl7257.

[24] C. J. Bustamante, Y. R. Chemla, S. Liu, and M. D. Wang. Opti-

cal tweezers in single-molecule biophysics. Nature Reviews Methods

Primers, 1(1):25, Mar 2021. doi:10.1038/s43586-021-00021-6.

[25] M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser.

Measurement-based quantum control of mechanical motion. Nature,

563(7729):53–58, Nov 2018. doi:10.1038/s41586-018-0643-8.

[26] Y. Harada and T. Asakura. Radiation forces on a dielectric sphere in

the rayleigh scattering regime. Optics Communications, 124(5):529 –

541, 1996. doi:10.1016/0030-4018(95)00753-9.

[27] K. Visscher and G. Brakenho↵. Theoretical study of optically induced

forces on spherical particles in a single beam trap. i: Rayleight scat-

terers. Optik, 89:174–180, 1992.

[28] N. Davidson, H. Jin Lee, C. S. Adams, M. Kasevich, and S. Chu.

Long atomic coherence times in an optical dipole trap. Phys. Rev.

Lett., 74:1311–1314, Feb 1995. doi:10.1103/PhysRevLett.74.1311.

[29] H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu. Raman cooling of

atoms in an optical dipole trap. Phys. Rev. Lett., 76:2658–2661, Apr

1996. doi:10.1103/PhysRevLett.76.2658.

[30] R. J. Cook and R. K. Hill. An electromagnetic mirror for

neutral atoms. Optics Communications, 43(4):258 – 260, 1982.

doi:10.1016/0030-4018(82)90392-3.

[31] J. P. Dowling and J. Gea-Banacloche. Evanescent light-wave atom

mirrors, resonators, waveguides, and traps. volume 37 of Advances

In Atomic, Molecular, and Optical Physics, pages 1 – 94. Academic

Press, 1996. doi:10.1016/S1049-250X(08)60098-1.

141

http://dx.doi.org/10.1126/science.abl7257
http://dx.doi.org/10.1038/s43586-021-00021-6
http://dx.doi.org/10.1038/s41586-018-0643-8
http://dx.doi.org/10.1016/0030-4018(95)00753-9
http://dx.doi.org/10.1103/PhysRevLett.74.1311
http://dx.doi.org/10.1103/PhysRevLett.76.2658
http://dx.doi.org/10.1016/0030-4018(82)90392-3
http://dx.doi.org/10.1016/S1049-250X(08)60098-1


Bibliography

[32] T. Müller-Seydlitz, M. Hartl, B. Brezger, H. Hänsel, C. Keller,

A. Schnetz, R. J. C. Spreeuw, T. Pfau, and J. Mlynek. Atoms in

the lowest motional band of a three-dimensional optical lattice. Phys.

Rev. Lett., 78:1038–1041, Feb 1997. doi:10.1103/PhysRevLett.78.1038.

[33] R. Ozeri, L. Khaykovich, and N. Davidson. Long spin relaxation times

in a single-beam blue-detuned optical trap. Phys. Rev. A, 59:R1750–

R1753, Mar 1999. doi:10.1103/PhysRevA.59.R1750.

[34] E. Hebestreit, R. Reimann, M. Frimmer, and L. Novotny. Measuring

the internal temperature of a levitated nanoparticle in high vacuum.

Phys. Rev. A, 97:043803, Apr 2018. doi:10.1103/PhysRevA.97.043803.

[35] T. Weiss, M. Roda-Llordes, E. Torrontegui, M. Aspelmeyer, and

O. Romero-Isart. Large quantum delocalization of a levitated nanopar-

ticle using optimal control: Applications for force sensing and en-

tangling via weak forces. Phys. Rev. Lett., 127:023601, Jul 2021.

doi:10.1103/PhysRevLett.127.023601.
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and U. Delić. Linear ultrastrong optomechanical interaction, 2023,

2305.16226.
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