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A B S T R A C T

This thesis presents an overview of experiments to test novel decoher-
ence phenomena and their theoretical foundations. The decoherence
phenomena studied here have different origins, be it due to general
relativistic effects or modifications of quantum mechanics. Multiple
avenues for such experiments have been explored in the literature. We
first focus on phenomena related to general relativity. We will give
an overview over the interactions of a quantum state and an external
gravitational field with general relativistic properties. Decoherence
can arise from proper time differences in the degrees of freedom of
a quantum state. These proper time differences lead to a coupling of
internal degrees of freedom within a quantum state. These couplings
allow for the generation of which path information. Another source of
decoherence analyzed in the literature is due to a gravitational wave
background. This stochastic background interacts with every quantum
state and leads to decoherence. We will then analyze modifications
of quantum mechanics. Initially, these models originated from the
desire to shed light unto the quantum to classical transition. It was
discovered early on that such modifications have to be done with
great care as to not run into contradictions with relativistic princi-
ples. Nevertheless, nonlinear Schrödinger equations were analyzed as
a possible intermediate solution for the transition of a system with
quantum properties to a system with classical ones. To circumvent
some of the relativistic constraints, the Schrödinger equation can also
be modified with a nonlinearity counterbalanced with a stochastic
part. This stochastic property is necessary to prevent superluminal
signaling within the theory. We analyze some of the theoretical efforts
in this direction and review experimental constraints of the parameter
space of such theories. We also describe a new set of experiments to
test such stochastic models (collapse models) with photonic crystals
and the advantages of using these systems to constrain the parameter
space defined by the theory. Last, we will give a new experimental
approach to test possible fifth-force contributions in measurements of
gravity between small masses.
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Z U S A M M E N FA S S U N G

Diese Arbeit gibt einen Überblick über Experimente zum Testen neu-
artiger Dekohärenzphänomene und ihrer theoretischen Grundlagen.
Die hier untersuchten Dekohärenzphänomene haben unterschiedli-
che zu Grunde liegende Mechanismen, sei es durch relativistische
Effekte oder Modifikationen der Quantenmechanik. In der Literatur
wurden mehrere Ansätze für solche Experimente untersucht. Wir kon-
zentrieren uns zunächst auf Phänomene im Zusammenhang mit der
Allgemeinen Relativitätstheorie. Wir geben einen Überblick über die
Wechselwirkungen eines Quantenzustands und eines externen Gravi-
tationsfeldes mit relativistischen Eigenschaften. Dekohärenz kann aus
Eigenzeitunterschieden in den Freiheitsgraden eines Quantenzustands
entstehen. Diese Eigenzeitunterschiede führen zu einer Kopplung
interner Freiheitsgrade innerhalb eines Quantenzustands. Diese Kopp-
lungen ermöglichen die Generierung von „Welcher-Weg“-Information.
Eine weitere in der Literatur analysierte Dekohärenzquelle ist auf
einen Gravitationswellenhintergrund zurückzuführen. Dieser stochas-
tische Hintergrund interagiert mit jedem Quantenzustand und führt
zu Dekohärenz. Desweiteren werden wir Modifikationen der Quan-
tenmechanik analysieren. Ursprünglich entstanden diese Modelle aus
dem Wunsch, den Übergang von Quantensystemen zu klassischen
Systemen zu beleuchten. Schon früh wurde erkannt, dass solche Modi-
fikationen mit großer Sorgfalt vorgenommen werden müssen, um nicht
in Widersprüche mit relativistischen Prinzipien zu geraten. Dennoch
wurden nichtlineare Schrödinger-Gleichungen als mögliche Zwischen-
lösung für den Übergang eines Systems mit Quanteneigenschaften in
ein System mit klassischen Eigenschaften analysiert. Um einige der
relativistischen Einschränkungen zu umgehen, kann die Schrödinger-
Gleichung auch mit einer Nichtlinearität modifiziert werden, die mit
einem stochastischen Teil ausgeglichen wird. Diese stochastische Er-
gänzung ist notwendig, um überlichtschnelle Signale innerhalb der
Theorie zu verhindern. Wir werden einige der theoretischen Ansätze
in dieser Richtung analysieren und experimentelle Beschränkungen
des Parameterraums solcher Theorien überprüfen. Wir beschreiben
auch eine neue Reihe von Experimenten zum Testen solcher stochasti-
scher Modelle (Kollapsmodelle) mit photonischen Kristallen und die
Vorteile der Verwendung dieser Systeme, um den von der Theorie
definierten Parameterraum einzuschränken. Zuletzt werden wir einen
neuen experimentellen Ansatz vorstellen, um mögliche Beiträge einer
weiteren (fünften) Kraft bei Messungen der Gravitationskraft zwischen
kleinen Massen zu testen.
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1
I N T R O D U C T I O N

Quantum mechanics and its foundational concepts have been success-
fully applied to most aspects of modern physics. From the descrip-
tion of atoms and fields, quantum mechanics has revolutionized our
understanding of particle physics and beyond. On the other hand,
general relativity, describing gravitational fields and interactions, has
furthered our understanding of cosmological phenomena as well as
revolutionized our understanding of time and space. However, it is
only formulated as a classical field theory so far. Considerable effort
has been expended to find a quantum theory of gravity, leading to
string theory and loop quantum gravity (among others), candidates
for a canonically quantized description of gravity. So far, no unified
field theory has been found.

The description of the gravitational field is given by the Einstein
equations, describing the coupling of space-time to the energy momen-
tum tensor. However, in the standard description the energy momen-
tum tensor is assumed to be a classical quantity. In contrast, quantum
mechanics taught us that momentum, energy and in general every
degree of freedom should be connected to an operator description
in order to adhere to the quantum mechanical framework. Indeed,
every experiment not involving gravity but other forces, like the elec-
tromagnetic field, show a quantization of its degrees of freedom in
experiments. Incorporating quantization into the description of these
forces has led us to quantum electrodynamics, quantum field theory
and the standard model of particle physics. The incorporation of grav-
ity into experiments probing quantum effects is notoriously difficult,
because of the very small interaction strength. So far only experiments
testing an external gravitational field in a quantum setting have been
carried out.

General relativity also has a remarkable history of experimental
success in describing cosmological phenomena, not least the recent de-
tection of gravitational waves as well as phenomena like gravitational
lensing, the Lense-Thirring effect or the description of black holes.

One interesting test bed that arises is the regime were the two
theories should supposedly meet, a regime were we still have a small
enough size to be able to prepare a coherent quantum state as well as
large enough to measure a gravitational influence originating from the
prepared state. There are several obstacles that make this a difficult
endeavor. One of them is decoherence, the interaction of the quantum
state with its environment. This diminishes the control over the purity
of the state, and subsequently leads to a loss of quantum properties

1



2 introduction

like entanglement or superposition and leading to a quasi-classical
description of the remaining state. Precise control of the environment
becomes a key obstacle to increase the mass of a test system needed to
detect its gravitational field, and several solutions to this conundrum
have been proposed. However, so far no experiment has reached a
regime were a genuine gravitational field of a mass in superposition
could have been detected.

Theoretical proposals of experiments exist for general relativistic ef-
fects in quantum systems. These could shed light on the incorporation
of gravity into the framework of quantum mechanics by analyzing
the effect of time dilation on the coherence of quantum states. Other
conceptual ideas include the incorporation of a gravitational wave
background, which should show as an additional decoherence in quan-
tum systems, ultimately limiting the preparation of large quantum
superposition.

From a theorist point of view, another question seems to be pressing.
How can we mend the apparent disconnect of Einstein’s equations
and their classical nature and the operator description of quantum
mechanics. Two possible solutions come to mind: The quantization
of the gravitational field, leading to quantum gravity. Or to find a
representation of the energy momentum tensor that is inherently
classical (at least in an intermediate regime).

The conundrum of finding a quantized description of the Einstein
tensor has also led to proposals of keeping the classical properties of
gravity and finding a modification of quantum mechanics that effec-
tively eliminates the need for quantization for all practical purposes.
Although such proposals cannot be ruled out with certainty at this
point, it leads to multiple conceptual problems. For one, nonlinear
modifications of quantum mechanics lead to contradictions of relativis-
tic principles, potentially allowing superluminal signaling. Also, when
analyzing proposals like the replacement of the energy momentum
tensor with an expectation value of a quantum state, the source of
the gravitational field becomes tied to the probability of the wave
function. This creates a peculiar disconnect of the gravitational field
and the position of its source mass when considering a superposition.
Interestingly, these modifications might still be useful to determine
regimes in which experiments could give new insights into the inter-
play of quantum mechanics and gravity, even when a full description
of gravity will be a quantized theory.

To this effect we will review the concept of collapse models, an
approach to describe the collapse of the wave function through an
objective mechanism directly integrated into the Schrodinger equation.
This modified Schrödinger equation leads to several effects testable in
experiments. We will propose such a setup, making use of photonic
crystals to probe for an intrinsic heating effect. Our approach has mul-
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tiple advantages regarding the limits of the model and can potentially
reach a parameter space of the model previously unprobed.

We will also simulate possible fifth force candidates in gravitational
force experiments. We will analyze a torsion pendulum experiment to
detect gravity of small source masses and potential additional forces
from scalar chameleon fields.

This work contains six major chapters. Chapter two will focus on
the theoretical description of phenomena that are linked to gravity
and lead to decoherence in experiments. Specifically, we will analyze
decoherence from general relativity, decoherence from a gravitational
wave background and decoherence from nonlinear modifications of
quantum mechanics. We will also describe additional scalar fields
within the standard model, so called chameleon fields.

In chapter three we will give an overview of experiments aiming to
detect such decoherence effects, focusing on experiments connected to
the theoretical descriptions given in chapter one.

In chapter four, we will give an analysis of a new way to test
CSL collapse models, using photonic crystals acting as a waveguide
for optical photons and mechanical phonons. We will describe the
modifications needed to calculate the heating effect of collapse models
within such structures and how it influences the phonon occupation
number. We will also describe the setup used to detect a possible
heating effect and possible new bounds arising from the experiment.

In chapter five, we will analyze an experimental setup to test
chameleon field theories introducing a potential fifth force. We will do
a full numerical analysis of the setup to quantify possible influences
of the chameleon field on the experimentally measured gravitational
force.

We will sum up our findings in chapter six, the Conclusions &
Outlook section.





2
T H E O RY B A C K G R O U N D , D E C O H E R E N C E

2.1 decoherence

We will start out the theory chapter with a basic introduction to deco-
herence as a tool to analyze the transition to macroscopic systems and
interactions with the environment. We will use the tools introduced
here to analyze experiments and to show possible ways of detecting
gravity in quantum systems.

We will begin with a simple model [88]. Imagine a system with
two degrees of freedom and its environment H = HS +HE. The
interaction is given by

Hint =
1
2

σz ⊗
N

∑
i=1

giσ
(i)
z (2.1)

This Hamiltonian is already diagonal, giving us the eigenbasis
{|n〉} = {|0〉, |1〉} as preferred basis of the system. The eigenstates of
Hintare all tensor product combinations of the basis states |n〉 with di-
mension N (giving 2N − 1 combinations). For an initially uncorrelated
state

|ψ〉 = (a|0〉+ b|1〉)⊗
2N−1

∑
i=1

cn|n〉 (2.2)

the time evolution given by e−iHintt creates an entangled state with
the environment. The environmental components of the state are given
by their evolution

|E0(t)〉 = |E1(−t)〉 =
2N−1

∑
i=1

cne−iEnt/2|n〉 (2.3)

Due to this entanglement we can gather information of the system
by evaluating the environment. The more distinguishable the envi-
ronment states are, the more information about the system state is
available. This can be quantified by the overlap of the states

r(t) = 〈|E0(t)〉|E1(t)〉〉 =
2N−1

∑
i=1
|cn|2eiEnt (2.4)

If the factor r(t) → 0 then off diagonal elements in the density
matrix |ψ〉〈ψ| will vanish. That means the environment can have a
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6 theory background, decoherence

dampening effect on the interference terms of the quantum state. If we
consider a large amount of degrees of freedom in the environment, we
have 2N different state vectors with N large compared to the system
dimension. All these vectors rotate with different frequencies En. The
average sum over such rotating vectors follows a two dimensional
random walk, giving us

〈|r(t)|2〉 = 2−N (2.5)

The overall dampening of interference terms scales with the environ-
ment size. The environment acts like a selector for a preferred basis,
given by the eigenstates of its Hamiltonian. However, it is important to
note that due to the cyclic nature of the time evolution and the finite
degrees of freedom of the environment, the state will disentangle from
the environment after a recurrence time τ = ∏n 1/En (or earlier, if
frequencies are multiples of each other). Another thing to note for
this simple system is that there is no energy exchange between the
environment and the system. Since the Hamiltonian only contains
components of σz, it commutes with the state change operator σx,
i.e. the populations are conserved. Decoherence can occur without
dissipation.

To generalize the above decoherence and also incorporate possible
dissipation (transfer of energy between the state and the environment)
we will introduce the Master equation form used to describe deco-
herence processes. We are interested in a way to study the dynamics
of the system at hand and changes of it due to the coupling to the
environment. But we are not interested in an explicit description of the
environment degrees of freedom. We introduce the reduced density
matrix of the system

ρS(t) = TrE (ρ(t)) = TrE
(

Û(t)ρ(0)Û†(t)
)

(2.6)

The unitary operators Û(t) represent the time evolution of the
combined system and environment. We want to avoid working with
these operators. We instead define the time evolution of the system as
given by

ρS(t) = V(t)ρS(0) (2.7)

with V(t) being called a dynamical map. This operator depends
on the system-environment states and has to be defined through the
properties of the environment and interaction.

We will restrict ourselves to linear, differential equations that are
local in time. They take the form

d
dt

ρS(t) = −i [HS(t), ρS(t)] +D [ρS(t)] (2.8)
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With a unitary term and a non unitary term containing decoherence
and dissipation. In order to find a more tangible form of this equation
we will apply the Born-Markov approximations. Two assumptions
enter here:

1. Born approximation

The environment is large compared to the system at hand, ap-
proximately constant in time and remain separable from the sys-
tem:

ρ(t) = ρS(t)⊗ ρE (2.9)

2. Markov approximation

Any self correlations within the environment are significantly
shorter lived than the characteristic time scale of the system.
There is no memory within the environment of the system evo-
lution.

Imposing the Born approximation leads to a time evolution in the
interaction picture

d
dt

ρS,I(t) = −
∫ t

0
dt′ TrE

[
Hint(t),

[
Hint(t′), ρS,I(t′)⊗ ρE

]]
(2.10)

with ρS,I(t) given by the time evolution with respect to the system
and environment without interaction. For the Markov approximation
we will have a close look at the interaction Hamiltonian. We can write
Hint(t) in its diagonal form

Hint(t) = ∑
i

Si(t)⊗ Ei(t) (2.11)

When inserting into (2.10) we get (among others) terms of the
form TrE

[
Ei(t)Ej(t′)ρE

]
. If we assume that the environment is in a

stationary state, the explicit time dependence drops out and we are
left with only a relative time dependence

TrE
[
Ei(t− t′)EjρE

]
≡ cij(t− t′) (2.12)

.
Now we apply the Markov approximation by noticing that due to

the time scale of correlations in the environment, the Cij(t− t′) have
to be sharply peaked around t − t′ = 0. That implies that we can
replace ρS,I(t′) with ρS,I(t) since contributions at different times will
vanish. Another change we can make is to the lower integration limit



8 theory background, decoherence

by shifting it to −∞. If we now shift back to the Schrödinger picture,
we will arrive at the final form of our Born-Markov equation

d
dt

ρS(t) = −i [HS, ρS(t)]−∑
i
([Si, BiρS(t)] + [ρS(t)Ci, Si]) (2.13)

with

Bi =
∫ ∞

0
dτ ∑

j
cij(τ)Sj(−τ) (2.14)

Ci =
∫ ∞

0
dτ ∑

j
cji(−τ)Sj(−τ) (2.15)

One last aspect to mention here is that the resulting reduced density
matrix ρS(t) will not necessarily be positive at all times. We can
write a more restrictive form, the Lindblad form, by demanding that
〈ψ|ρS(t)|ψ〉 ≥ 0 ∀t. The diagonalized form is

d
dt

ρS(t) = −i [HS, ρS(t)]+∑
i

κi

(
L†

i LiρS(t) + ρS(t)L†
i Li − 2LiρS(t)L†

i

)
(2.16)

with the Lindblad operators Li given by suitable linear combinations
of the operators Si. If the Lindblad operators are hermitian we can
simplify (2.16) to

d
dt

ρS(t) = −i [HS, ρS(t)] + ∑
i

κi [Li, [Li, ρS(t)]] (2.17)

One notable example of this Lindblad equation is the master equa-
tion for environmental scattering, with the Lindblad operators given
by L = x and HS = p2/2m.

Modeling of many possible physical interactions to recover deco-
herence relations with arbitrary environments can be simplified in
most cases. It turns out that by modeling the system in phase space
with operators X, P and an environment given by a bath of harmonic
oscillators is sufficient under many circumstances. (Or in the case
of spin particles, spin description and spin-bath environments can
be used) In particular, we want to have a closer look at the master
equation for quantum brownian motion as it is of importance for later
chapters.

We start with the Hamiltonian of the system

H = HS +HE +Hint (2.18)
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with the interaction Hamiltonian

Hint = x⊗∑
i

ciq
(E)
i (2.19)

with x the position operator of the system and q(E)
i the position oper-

ators of the harmonic oscillators of the environment. The environment
Hamiltonian is simply a sum of oscillator Hamiltonians

HE = ∑
i

(
1

2mi
p(E) 2

i +
1
2

miωiq
(E)
i

)
(2.20)

First, we will calculate the self correlation function (2.12) for the
environment

c(τ) = ∑
i

c2
i Tr
(

q(E)
i (τ)q(E)

i ρE (0)
)

(2.21)

where we used that different oscillators of the environment are
not interacting. To calculate c(τ) we can use the ladder operator
representation and the well known time evolution of the operators
ai, a†

i in the interaction picture to arrive at the expression

c(τ) = ∑
i

c2
i

2miωi

(
coth

(
h̄ωi

2kBT

)
cos(ωiτ)− i sin(ωiτ)

)
(2.22)

We have used the known relation for the mean occupation number
〈a†

i ai〉 = (exp (h̄ωi/kBT)− 1)−1. The self correlation function is often
rewritten as

c(τ) = ν(τ)− iη(τ) (2.23)

with

ν(τ) =
∫ ∞

0
dω J(ω) coth

(
h̄ω

2kBT

)
cos(ωτ) (2.24)

η(τ) =
∫ ∞

0
dω J(ω) sin(ωτ) (2.25)

the decoherence and dissipation kernel respectively.
The function J(ω) is called the spectral density of the environment.

J(ω) = ∑
i

c2
i

2miωi
δ(ω−ωi) (2.26)

We can now use our prior knowledge from above to calculate all
the components of the Born-Markov equation to get
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d
dt

ρS(t) = −i [HS, ρS(t)]−
∫

dτ (ν(τ) [x, [x(−τ), ρS(t)]]

−iη(τ) [x, {x(−τ), ρS(t)}]) (2.27)

Where the decoherence and the dissipation with the environment is
completely determined by the decoherence and dissipation kernel and
the position operator of the system. In order to get explicit expression
we assume that the system is also confined in a harmonic oscillator
potential.

HS =
1

2M
p2 + MΩ2x2 (2.28)

Again using the interaction picture, the resulting master equation
reads

d
dt

ρS(t) = −i
[
HS + MΩ̃2x2, ρS(t)

]
− iγ [x, {p, ρS(t)}]

− D [x, [x, ρS(t)]]− f [x, [p, ρS(t)]] (2.29)

with the four characteristic coefficients

Ω̃2 = − 2
M

∫ ∞

0
dτη(τ) cos(Ωτ) (2.30)

γ =
1

MΩ

∫ ∞

0
dτη(τ) sin(Ωτ) (2.31)

D =
∫ ∞

0
dτν(τ) cos(Ωτ) (2.32)

f = − 1
MΩ

∫ ∞

0
dτν(τ) sin(Ωτ) (2.33)

The first term Ω̃2 represents a frequency shift of the system. γ is a
momentum dampening constant, thus describing the diffusion of the
system. D describes the decoherence of the system in the position basis
and f is an anomalous diffusion coefficient. It is called anomalous
because it has the form of diffusion but with respect to two different
variables x and p. In a lot of systems this coefficient can be neglected.

Lastly, we want to introduce the high temperature limit kBT �
h̄Λ � h̄Ω of the above Born-Markov equation (2.29), the Caldera-
Leggett equation. When considering the spectral density

J(ω) =
2Mγ0

π
ω (2.34)
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known as an ohmic bath, with a cutoff Λ such that

J(ω) =
2Mγ0

π
ω

Λ2

Λ2 + ω2 (2.35)

which is known as the Lorenz-Drude form. The calculation of the
four characteristic functions is straight forward. For D we simply
have a double fourier cosine transform, which leaves even functions
unchanged. We get

D = Mγ0Ω
Λ2

Λ2 + ω2 coth
(

h̄Ω
2kBT

)
≈ 2Mγ0ΩkBT (2.36)

Similarly, for the damping γ we have a double fourier sine transform,
giving

γ = γ0
Λ2

Λ2 + Ω2 ≈ γ0 (2.37)

The calculation of the other two functions needs an explicit evalua-
tion of the double fourier transforms giving

Ω̃2 = −2γ0
Λ3

Λ2 + Ω2 (2.38)

In the case of the anomalous diffusion coefficient an explicit evalua-
tion is difficult due to the term coth (h̄Ω/kBT) but using our approxi-
mation an explicit form can be given

f =
2γ0kBT

Λ
(2.39)

This term is typically negligible when compared to D and can be
omitted. Using these coefficients we can now write down the Caldera-
Leggett form of the master equation

d
dt

ρS(t) = −i
[
HS + MΩ̃2x2, ρS(t)

]
− iγ0 [x, {p, ρS(t)}]

− 2Mγ0ΩkBT [x, [x, ρS(t)]] (2.40)

Decoherence is a powerful tool in understanding the influence of an
environment on a quantum system. It is often used as an explanation
for the transition from quantum mechanics to our classical perception
of macroscopic systems. Specifically, decoherence shines a light on
the emergence of a preferred basis as an operational outcome of the
system-environment interaction. However, the question of definite
outcomes in an experiment from a superposition state is not directly
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contained within the formalism. The state within the system might
appear in a state in the measurement basis, but the superpositions
with the environment are still intact, the unitarity of the combined
system is upheld. This question of how to select a specific outcome
is addressed in a variety of interpretations of quantum mechanics.
Further discussion on the interpretations of quantum mechanics can
be found in (quantum interpretations)

We are mostly interested here in including gravitational effects into
quantum mechanical settings. First, we will look at gravity and general
relativity effects as new sources of decoherence in quantum systems.
Then we will look at the question of gravity as a classical field and the
problems of coupling to quantum systems arising from it. In contrast,
if gravity is a quantum field theory, one might not expect a transition
region coming from a quantum-to-classical-transition. Instead, one
might look at a region in which gravitational interactions become dom-
inant. These two regimes are not mutually exclusive and have overlaps,
giving us the opportunity to use them as test beds for unknown grav-
ity effects independent of the properties of the gravitational field.
Specifically, if there is a transition region between quantum mechanics
and gravity, where would one look for such a transition and what
would be the expected outcomes? We will address these questions
by looking at possible modifications of quantum mechanics, such as
the Schrödinger-Newton equation. This equation emerges from the
Newtonian approximation of the Moller-Rosenfeld equation, an at-
tempt to unify the operator form of the energy-momentum tensor with
the Einstein tensor. We will also look at collapse models, specifically
addressing the quantum-to-classical transition from the perspective
of definite outcomes in quantum measurements and their tie-ins with
gravity. A complete overview of interpretational problems from the
perspective of collapse models can be found in [14, 15].

2.2 gravity in quantum systems

The interplay of gravity and quantum mechanics is a topic for theo-
rists and experimentalists for a considerable amount of time. Since
gravity should, like any other force have an impact on the phase of
superposition states, this was one of the first test beds for gravitational
effects in a quantum setting. The first experiment testing such phase
shift was introduced by Colella, Overhauser and Werner, who showed
such a phase shift in [28] using a neutron beam traveling through a
silicon crystal interferometer [85]. The phase shift then depends on
the height difference of the two paths through the interferometer. The
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state after passing through the interferometer, but before recombining
can be written as

|φ〉 = 1√
2

(
ie−iϕ1 |φ1〉+ e−iϕ2+iχ |φ2〉

)
(2.41)

with detection probabilities of

P1,2 =
1
2
(1± cos (∆ϕ + χ)) (2.42)

In the original paper [77] the phase shift is attributed to a Hamilto-
nian H = p2/2m + mgz. The induced phase factors are proportional
to the action S1,2 =

∫
dt V1,2 along the respective path.

An important thing to note here is that the gravitational effect
is only an external field acting on a quantum system. The effect
is equivalent to the electric Aharanov-Bohm effect, where the vector
potential of an electric field can create a phase difference in superposed
paths through an interferometer. Any classical potential, such as a
Newtonian potential can create this effect. A genuine relativistic effect
would have to take into account a property of Einstein’s theory of
relativity that is not present in the Newtonian description. One such
property is time dilation, which leads to an additional effect if the
proper time states (acting as clocks) of the particles traversing the
interferometer are taken into account.

If we are willing to delve into more theoretical approaches, gravity
could also show a signature of modifications of quantum theory as
well as through effects coming from gravitational wave backgrounds,
inducing different decoherence phenomena. We will have a closer look
at them in the next sections.
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2.3 decoherence from gravity

Before we get into modifications of quantum mechanics, we will start
with the incorporation of relativistic effects into standard quantum
experiments, based on the works of Brukner, Zych, Pikovski and Costa
[83, 105, 106].

2.3.1 Proper Time creates Decoherence

As mentioned above, Newtonian potentials can create phase shifts in
quantum states. These phase shifts can be attributed to gradients in the
gravitational field, where the relative phase φ picked up corresponds
to different trajectories in an Interferometer. It is tempting to associate
this phase shift with the action S = mc2

∫
γ dτ along the path, which is

determined by its proper time. However, this effect is identical with
a particle in an interferometer on flat space-time with an effective
Newtonian potential [28, 82, 104] and therefore not a test suited for
detecting relativistic effects, e.g. effects induced by time dilation.

In order to test the impact of proper time on a quantum system
M. Zych et. al. [105] suggested to consider a state with an internal
clock degree of freedom to keep track of the evolution of proper
time within an interferometer. To start, consider Hint the Hamiltonian
describing the internal evolution of a massive state, given by Hint =

E0|0〉〈0| + E1|1〉〈1|. Considering the laboratory frame, we have to
transform the time coordinate from laboratory frame to rest frame.
So instead of ih̄∂τ = Hint we have ih̄∂t = τ̇Hint with τ̇ =

√
−gµν ẋµ ẋν.

The energy of our particle is given by E = mc2 − g00
τ̇ . Our space-

time geometry for experiments on earth can be described by the
Schwarzschild metric [100]

c2dτ =

(
1 + φ(x)

2c2

)2

(
1− φ(x)

2c2

)2 c2dt2 −
(

1− φ(x)
2c2

)4 (
dx2 + x2dΩ2) (2.43)

with φ(x) = −GM/x. For a weak field and low velocities we can
approximate our final Hamiltonian H = H0 + τ̇Hint[105] as

H w mc2 + Hint + EGR
k +

φ(x)
c2

(
mc2 + Hint + EGR

corr

)
(2.44)

where

EGR
k =

p2

2m

(
1 + 3

( p
2mc

)2
− 1

mc2 Hint

)
(2.45)
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and

EGR
corr =

1
2

mφ(x)− 3
p2

2m
. (2.46)

In a classic Mach Zehnder setup, the particle state will be of the form
|Ψ〉 = 1/

√
2
(
i |Ψ1〉+ eiϕ |Ψ2〉

)
with the states |Ψ1〉 , |Ψ2〉 describing

the state in each arm respectively. Considering an initial state |xin〉 |τin〉
and the above Hamiltonian H we get

|Ψi〉 = exp
(
− i

h̄

∫
γ

dt
φ(x)

c2

(
mc2 + Hint + EGR

corr

))
|xin〉 |τin〉 (2.47)

For small height difference in the interferometer the potential can be
approximated to linear terms φ(R + ∆h) = φ(R) + GM

R2 ∆h +O
(
∆h2).

We choose an initial state |τin〉 = 1/
√

2 (|0〉+ |1〉) to finally get

P±(ϕ, m, ∆E, ∆V, ∆T) =
1
2
± 1

2
cos

(
∆E∆V∆T

2h̄c2

)
· cos

((
mc2 + 〈Hint〉τin + ĒGR

corr

)
+

∆V∆T
h̄c2 + ϕ

)
(2.48)

with ∆E = E1 − E0, ∆T the time of flight at different heights and
∆V = GM

R2 ∆h. This gives the visibility of the interference pattern

V =

∣∣∣∣cos
(

∆E∆V∆T
2h̄c2

)∣∣∣∣ . (2.49)

This change in visibility cannot be observed by just introducing a
Newtonian gravitational field. It is a direct consequence of the internal
proper time that differs between the two paths due to the difference in
gravitational potential. If we use |Ψ〉 = 1/

√
2
(
i |x0〉 |τ0〉+ eiϕ |x1〉 |τ1〉

)
and calculate the detection probabilities, this becomes more apparent:

P± =
1
2
± 1

2
|〈τ0|τ1〉| cos (α + ϕ) (2.50)

The phase α being the phase factor separated from
〈τ0|τ1〉 = |〈τ0|τ1〉| eiα.
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2.3.2 General decoherence from a proper time difference

The dephasing in the last section due to proper time also has a more
general effect on quantum states subjected to a gravitational gradient.
Pikovski et. al. [83] discovered that the proper time difference in inter-
nal degrees of freedom lead to a coupling of these degrees of freedom
to the center of mass of the quantum state. Consequently, a superpo-
sition state with suitable internal states will dephase in the center of
mass degree of freedom. Assuming the internal Hamiltonian to be
H0 = ∑N

i=1 h̄ωiniand taking into account the total gravitational mass
of the system, which in general relativity amounts to the rest mass
plus kinetic contributions mtot = m0 + H0/c2, we get an additional
interaction term

Hint = φ(x)
H0

c2 =
h̄gx
c2

N

∑
i=1

ωini , (2.51)

similar as in (2.44). Now, consider our initial state of the center of mass
|ψcm〉 = 1/

√
2 (|x1〉+ |x2〉) and our internal degrees of freedom to be

in thermal equilibrium

ρi =
1

πn̄i

∫
d2αie−(|αi |2/n̄i) |αi〉 〈αi| . (2.52)

The total state initially reads |ψcm〉 〈ψcm| ⊗Πiρi. Because of (2.51)
the matrix elements of the state become

ρ12 = 〈x1|ρ|x2〉 =
1

2πn̄i
eimg∆xtΠN

i=1

∫
d2αie−(|αi |2/n̄i)

∣∣∣α(1)
i

〉 〈
α
(2)
i

∣∣∣
(2.53)

with
∣∣∣α1,2

i

〉
= αie−iωit(1+gx1,2/c2). One can see, that the internal de-

grees of freedom evolve with different frequencies, leading to a de-
phasing dependent on the position in the gravitational potential. It
is important to note that this dephasing is unique to the property of
time dilation and does not occur in Newtonian gravity. The effect on
the center of mass can be seen by tracing over the internal degrees of
freedom and considering the visibility V as above.

V(t) = 2
∣∣∣ΠN

i=1Tri (ρ12(t))
∣∣∣ = ∣∣∣∣ΠN

i=1

[
1 + n̄ie−iωitg∆x/c2

]−1
∣∣∣∣ (2.54)

This can be further approximated by assuming that ωitg∆x/c2 � 1
and n̄i ≈ kBT

h̄ωi
, that is nonrelativistic timescales and high temperatures,

respectively. The visibility V then becomes

V ≈
(

1 +
(

kBTg∆xt
h̄c2

)2
)−N/2

≈ e−(t/τdec)
2

(2.55)
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with

τdec ≈
√

2
N

h̄c2

kBTg∆x
(2.56)

Furthermore, this decoherence can be formulated more generally as
a master equation of the form [83]

ρ̇ = −1
h̄

[
Hcm +

(
m +

NkBT
c2

)
gx, ρcm(t)

]
− N

(
kBTg
h̄c2

)2 ∫ t

0
ds
[

x, e−iHcms/h̄ [x, ρcm(t− s)] e−Hcms/h̄
]

.

(2.57)

If Hcm only has a negligible influence (compared to the decoher-
ence time scale) on the off diagonal elements of the density matrix
one recovers the familiar decoherence term of double commutators
L[ρcm(t)] = −Nt

(
kBTg
h̄c2

)
[x, [x, ρcm(t)]]. In this approximation we re-

cover the decoherence time (2.56). It is in this sense a universal deco-
herence effect for any composite quantum system in a superposition
of different proper time paths. It is important to stress that this ef-
fect occurs simply by considering basic quantum mechanics and low
energy general relativity. No additional assumptions have entered.
This is in contrast to other concepts for decoherence, which assume
additional effects through the modification of quantum mechanics and
therefore new physics beyond the conventional quantum theory.
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2.3.3 Decoherence due to Gravitational Wave Background

As we have seen above, decoherence can occur from basic assumptions
of general relativity incorporated into quantum mechanics. Another
phenomenon, gravitational waves, that recently found experimental
verification are adding decoherence to quantum systems. Apart from
the data gathered by LIGO for black hole mergers [2], there is a
plethora of sources for gravitational waves in our galaxy and other
galaxies. Their collective overlap of gravitational waves can be summa-
rized into a stochastic background [89]. The exact spectral density of
this background is unknown but can, with enough sensitivity of the
experiment, show up in gravitational wave detector measurements. A
series of papers [57, 65] has analyzed the influence of this gravitational
wave background on potential experiments.

First, we need to introduce basics of gravitational waves through
linearized gravity [99].

2.3.4 Linearized Gravity

We are starting from the Einstein equations

Gab = Rab −
1
2

Rgab = 8πTab (2.58)

We are interested in a regime with weak curvature meaning we can
approximate the spacetime as flat with only a small deviation. This
can be done by rewriting the metric as

gab = ηab + hab (2.59)

We now need all the components to build up an expression for the
Einstein equation. First, we need the affine connection

Γa
bc =

1
2

ηad (∂chdb + ∂bhdc − ∂dhbc) (2.60)

then the Riemann tensor can be calculated from

Ra
bcd = ∂cΓa

bd − ∂dΓa
bc (2.61)

From here we can construct the Ricci tensor

Rab = Rc
acb =

1
2
(∂c∂bhc

a + ∂c∂ahcb −�hab − ∂a∂bhc
c) (2.62)

and the curvature tensor

R = Ra
a = (∂c∂ahc

a −�ha
a) (2.63)
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From there we can finally write the Einstein tensor as

Gab = Rab − ηabR (2.64)

However this can be simplified by replacing the hab with its trace
reversed version h̄ab = hab − 1

2 ηabhc
c which eliminates all terms con-

taining the trace hc
c. Choosing a suitable gauge for our system, which

in general relativity amounts to an infinitesimal coordinate transfor-
mation xa = xa + ξa, e.g. Lorentz gauge ∂ah̄ab = 0 (which can always
be achieved through the condition �ξb = ∂ah̄ab), the Einstein tensor
finally reduces to

Gab = −
1
2
�h̄ab (2.65)

and the linearized Einstein equation becomes

�h̄ab = −16πTab (2.66)

or in vacuum

�h̄ab = 0 (2.67)

The solutions to this equation can be written as superpositions of
plane waves

h̄ab(x, t) =
∫ d4k

2π
h̄ab[k]eikaxa

(2.68)

with h̄ab[k] = ∑±
(

ε±a ε±b /
√

2
)

h±[k]. A further simplification can
be made by only considering globally vacuum spacetimes, which
introduce the traceless transverse gauge. Here, all metric perturbations
are taken to be purely spatial (h̄ti = h̄tt = 0) and traceless (h̄c

c = 0).
Because of Lorentz gauge ∂ah̄ab = 0 all spatial components of the
metric are transverse components.

We will assume for simplicity, that the stochastic background will
be stationary, unpolarized and isotropic. We can rewrite the expansion
of plane waves as [68]

h̄ab(t) = ∑
±

∫
d f
∫

dΩh±[ f , Ω]e−2iπ f t
(

ε±a ε±b /
√

2
)

(2.69)

with h±[− f , Ω] = h±∗[ f , Ω]. The correlation function of h±[ f , Ω] in
a stationary, unpolarized, isotropic background simplifies to

〈h±∗[ f , Ω], h±[ f ′, Ω′]〉 = δ( f − f ′)δ2(Ω, Ω′)δ±Sh( f ) (2.70)
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From the Fourier amplitudes, we can then relate the introduced
spectral density Sh [57] as:

〈h̄ab(t)h̄ab(t′)〉 =
∫

d f Sh[ f ]e−i2π f (t′−t) (2.71)

We define the energy density of the gravitational wave as a spatial
average over a frequency range

ρgw =
1

32πG
〈∂th̄ab(t), ∂th̄ab(t)〉 (2.72)

For a stochastic background, this amounts to a time average at one
point in Fourier space (2.70). Together with (2.69) we get

dρgw

d f
=

πc2

2G
f 2Sh[ f ] (2.73)

We can associate the energy density per frequency with an average
temperature of the gravitational wave giving

Sh[ f ] =
16G
c5 kBT (2.74)

This description using a characteristic temperature is valid as long
as Sh can be approximated as nearly flat in frequency. This seems to
be true for frequencies of ω ≈ 10−6Hz − 10−4Hz, which results in
Sh ≈ 10−34Hz−1. The corresponding temperature seems rather large
(Tgr ≈ 1041K) which is attributed to the fact that gravity only couples
very weakly to massive systems leading to large times to equilibrate.
This stochastic background is typically assumed to originate from a
plethora of sources, leading to a stochastic noise with quasi gaussian
statistics. (papers here)

This noise can change phase relations in an interferometer. We will
have a look at one example, a sagnac interferometer.

The phase acquired in a sagnac interferometer is

Φ =
1
h̄

∫
pidxi =

2m
h̄

AΩ (2.75)

with the mass of the particle traveling through the interferometer m,
The enclosed area A, and the angle of rotation of the interferometer
Ω. The momentum here is pµ = gµνmvν and the enclosed area is
A = v2τ2 sin(α) with τ the flight time through the interferometer and
α the enclosed angle of the two arms. We are now interested in the
modification of the phase due to this gravitational background noise.
It can only depend on fluctuations in h12(t) which corresponds to the
plane of the interferometer while all other components are zero by



2.3 decoherence from gravity 21

definition of the traceless transverse gauge. The fluctuations can then
be written as

δΦ =
1
h̄

∫
h̄12v1v2dτ =

2m
h̄

AδΩ (2.76)

Since all other components are fixed with the geometry of the
interferometer, the noise only manifests in the angular rotation. This
phase fluctuation has to be proportional to the average change of the
metric component δΩ ∝ dh̃

dt with

h̃ =
∫

h(t− τ)g(τ)dτ (2.77)

The function g(τ) then represents the time of flight through the inter-
ferometer, which in this case is simply a triangular function, increasing
the average fluctuations over a time τ. Since this gives one particular
fluctuation we also need to average now over all phase fluctuations
δΦ to arrive at an expression for the contribution of a stochastic grav-
itational background. This can be done by looking at the average
visibility of the interference, given by 〈exp(iδΦ)〉. We already know
that the fluctuations of δΦ are dependent on the area of the interfer-
ometer as well as the rotation angle. We also know that the correlation
of the metric fluctuations is described by a noise spectrum Sh. It was
shown in [65] that one can express the correlations of δΦ as (see also
(2.71))

〈δΦtδΦs〉 =
∫ d f

2π
SΦ[ f ]e−i2π f (t−s) (2.78)

were the noise spectrum

SΦ = Sh Ã( f ) (2.79)

with Ã( f ) the fourier transform of the area. Since we have a gaussian
distributed noise the average of 〈exp(iδΦ)〉 corresponds to a gaussian
distribution exp

(
− 〈δΦtδΦs〉

2

)
. We can now write

〈
δΦ2

τ

〉
=

(
2mv2

h̄
sin(α)

)
Sh2τ (2.80)

For sagnac interferometers using lasers to generate the beamsplitting
effect, resulting in a small angle α, as well as atoms used for the
massive particles, we can estimate the effect for an interferometer arm
length of l ≈ 1m. Using caesium atoms with mass m = 2 · 10−25kg,
velocity v = 1ms−1, rotation frequency Ω = 4 · 107Hz and an angle
α = 0.035 (values investigated for a proposed experiment in [65]) we
get for the above assumed approximately flat noise spectrum Sh

〈
δΦ2

τ

〉
= 10−21 (2.81)
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a rather low value. The fringe contrast in such experiments remains
unaffected f.a.p.p.

Although a gravitational wave background contributes decoherence
to quantum systems, the effect is much smaller than other sources of
decoherence in similar setups. An experimental verification of such an
effect in tabletop experiments is not feasible in the near future.
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2.3.5 Master equation from stochastic backgrounds

The above effect of decoherence due to a gravitational wave back-
ground can be formulated as a master equation describing deco-
herence [18]. As seen above, we should expect a coupling between
spacetime perturbations, as in fluctuations of the metric tensor, and
the energy-momentum tensor. For superposition systems at rest, their
rest energy should therefore determine the strength of the coupling.
In order to derive a master equation, it is assumed that perturbative
quantum field theory can be applied to gravity. A justification for this
approach can be argued for, by claiming that for a full developed
quantum gravity theory, we should recover similar results in its low
energy limit, particularly, with its effective field theory description.
Following [18], one arrives at the master equation

∂tρ(t) = −i [H, ρ(t)]

−
∫ t

0
dτ
∫

drdr′
{

N(r− r′, τ)
(
2[Tµν(r), [Tµν(r′,−τ), ρ(t)]]

−[T µ
µ (r), [T ν

ν (r′,−τ), ρ(t)]]
)

− iD(r− r′, τ)
(
2[Tµν(r), {Tµν(r′,−τ)ρ(t)}]

−[T µ
µ (r), {T ν

ν (r′,−τ), ρ(t)}]
) }

(2.82)

with H being the free Hamiltonian of the scalar field and the noise
and dissipation terms are

N(r, t) =
(κ

4

)2 ∫ dk
(2π)3

eikr

k
cos(kt)[1 + 2n(k)] (2.83)

D(r, t) =
(κ

4

)2 ∫ dk
(2π)3

eikr

k
sin(kt) (2.84)

with n(k) the thermal occupation number at a given temperature.
We furthermore restrict ourselves to stationary, macroscopic matter
states, described by coherent states

|α(k)〉 = exp
[
−1

2

∫
dk|α(k)|2 +

∫
dkα(k)α†(k)

]
|0〉 (2.85)

where α(k) = A0R3
√
(m2 + k2)1/2 /2 exp

(
−ikr0 − (kR)2/2

)
, and

thus have a spread of R and a (approximately) static center at r0. From
this, we can analyze the master equation 2.82 using a superposition
state of two positions. The resulting initial density matrix is

ρ[φ, φ′, 0] = 〈φ|Ψ〉
〈
Ψ|φ′

〉
(2.86)
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With

〈φ|Ψ〉 = 1/
√

2(〈φ|α(k)〉+
〈
φ|α′(k)

〉
) . (2.87)

For the stationary, nonrelativistic limit we have T00(φ) ≈ 1
2 m2φ2 and

arrive at an expression for the noise part of 2.82

∂tρ[φ, φ′, t] =

. . .− T
2π

(κ

4

)2
(∫

dr
[

1
2

m2(φ(r))2 − 1
2

m2(φ′(r))2
])2

ρ[φ, φ′, t]

(2.88)

This corresponds to decoherence in position but under the condition
that the two parts of the superposition state have different energies.
Superpositions with the same energy do not decohere in this model.
For example, a superposition in position of an atom in the ground
state would not see any decoherence from a gravitational background
in this case. However, for superpositions of excited and ground state
we would get decoherence of the order of Γ ∼ 10−45s−1. If we would
look at macroscopic systems (of the order of grams) the decoherence
increases to Γ ∼ 102s−1. So this decoherence effect only contributes
non-negligibly at macroscopic scales.

This resulting master equation is very similar to a general result ob-
tained in [10]. Here a master equation is calculated from the interaction
of a bosonic particle in a weak, stochastic and classical gravitational
field. The full master equation is rather lengthy and can be found in
[10] on page 6. However, in the case of the nonrelativistic limit and
considering the main contribution to be the decoherence in position,
they derive a compact master equation

∂tρ(t) = −
i
h̄
[H, ρ(t)]− α2Lc3

(2π)3h̄5

∫
d3q u00(q)m2(q)[

eiqX/h̄,
[
e−iqX/h̄, ρ(t)

]]
+ O(hµi) + O(∆E) (2.89)

The function u00(x) is the noise kernel, already assumed to be
markovian and invariant under spatial translations. The form of
Blencowe can be recovered by assuming u00(x − y) = L3δ(x − y)
is delta correlated in space. The only difference between these two
derivations is the assumption of the bath. In the case of Blencowe, the
bath is a quantum bosonic bath, while the derivation in [10] assumes
a purely classical bath. However, the resulting structure (and effect) of
the decoherence is the same. This makes the distinction of these two
models difficult in experiments.
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2.4 nonlinear extensions

In the above chapter we have delved into the question of how gravity
can introduce decoherence in quantum systems, either through taking
into account time dilation or by assuming that a linear approximation
to the Einstein equations can introduce decoherence through fluctua-
tions of the metric. In this section we want to consider deviations from
quantum mechanics and how changes of the linear time evolution
can lead to different predictions for experiments and the challenges
arising from doing so.

The first attempts to find an underlying nonlinear description of
quantum mechanics, from which its linear stochastic behavior emerges,
was carried out by De Broglie in 1960 [20]. However, no explicit
nonlinear equation was proposed. The first attempt to modify the
Schrödinger equation was undertaken by Bialynicky-Birula and My-
cielski in 1976 [17]. They proposed a logarithmic extension of the form
−bψ ln |ψ|2. The advantage of such a modification is that it leaves the
energy consistent with the Plank identity E = h̄ω for stationary states.
Their approach also left separate, non-interacting systems separable
in time e.g. ψ(0)φ(0)→ ψ(t)φ(t) where the time evolution of the two
wave functions can be treated separately.

Another proposal for a nonlinear quantum theory was formulated
by Steven Weinberg in 1989 [101]. The non-linearity is introduced
through changing the property of observables. In quantum mechanics,
observables are described by Hermitian matrices, or equivalently,
through the bilinear form 〈ψ|A|ψ〉. We will use the notation |V〉 as a
vector notation describing the vectors Vk and its complex conjugate
〈V| → V∗k . Weinberg introduces the non-bilinear form a(|ψ〉 , 〈ψ|).
These functions are invariant under multiplication with a complex
number, similar to usual quantum mechanics, i.e. Za(|ψ〉 , 〈ψ|) =

a(Z |ψ〉 , Z 〈ψ|), which is equivalent to |ψ〉 ∂a
∂|ψ〉 = a. (This is read as a

derivative of the components of |ψ〉) The functions a form an algebra
with obvious addition and multiplication by scalar. The scalar product
becomes a · b = ∂a

∂|ψ〉
∂b

∂〈ψ| . The unit element then is simply |ψ〉 〈ψ|.
The last ingredient are symmetry transformations as in quantum
mechanics εδ |ψ〉 = −iεÂ |ψ〉, which, with our function a, amount to
δ |ψ〉 = −iε ∂a

∂〈ψ| . Specifically, a transformation in time t generated by a
Hamiltonian function h(|ψ〉 , 〈ψ|) reads

δ |ψ(t + ε)〉 = |ψ〉+ εδ |ψ〉 (2.90)

and therefore, our time evolution equation becomes

∂ |ψ〉
∂t

= −i
∂h

∂ 〈ψ| (2.91)
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To give an example of this nonlinear evolution [46], let us assume a
Hamiltonian function

h(|ψ〉 , 〈ψ|) = 〈ψ|σz|ψ〉2

〈ψ|ψ〉 (2.92)

and the resulting nonlinear Schrödinger equation

d |ψ〉
dt

= −2i
〈ψ|σz|ψ〉
〈ψ|ψ〉 σz |ψ〉 (2.93)

As was noted by Nicolas Gisin [46][84] in a follow up paper to
Weinbergs nonlinear modifications, the above time evolution has one
notable flaw with respect to relativistic properties: it allows superlu-
minal communication. In the specific case here, if one considers the
mean value of 〈σy〉 and the initial state is a Bloch vector in (0, 0,±1)-
direction, then the mean value will always be zero. However, for an
initial state in (1, 1,±1)-direction, we get a rotation around the z-axis
clockwise or counterclockwise depending on the sign. Thus, after a
quarter rotation we will get a positive value for 〈σy〉 different from
the other initial condition. Due to this, one can distinguish different
preparations. This can be used to transfer information faster than light
through preparing an entangled state. The measurement on one party,
A, will prepare the state for the other party, B, in a distinct initial state.
Measuring the state for B then reveals the preparation made by A
without the need for communication.

This argument can be made more general by looking at properties of
standard quantum mechanics. The time evolution of a wave function
is determined by a Hamiltonian such that

|ψ(0)〉 → |ψ(t)〉 = e−iHt |ψ〉 (2.94)

On the other hand, in order to describe a measurement, one uses
the von Neumann postulate [45] that gives the outcome associated
with an observable P with the properties P2 = P†P = P.

In the context of density matrices this leads to the following expres-
sion

ρ(t) = Pρ(0)P + (1− P)ρ(0)(1− P) (2.95)

where ρ(0) = ∑i ci|ψi〉〈ψi| is a decomposition of the initial state. The
time evolved state is independent of the decomposition of the density
matrix. How can a nonlinear time evolution now lead to superluminal
signaling? Let us define an evolution

g : |ψ〉 〈ψ| → g(|ψ〉 〈ψ|) (2.96)
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on the set of pure states. For a mixture of states the evolution then
gives

∑
i

ci |ψi〉 〈ψi| →∑
i

cig(|ψi〉 〈ψi|) . (2.97)

Now let us further assume that

∑
i

ci |ψi〉 〈ψi| = ∑
i

di |φi〉 〈φi| (2.98)

but

∑
i

cig(|ψi〉 〈ψi|) 6= ∑
i

dig(|φi〉 〈φi|) , (2.99)

that is different mixtures evolve differently in time. Then according
to the Schmidt decomposition of a composite system we can write a
general state

|Ψ〉 = ∑
ij

Aij |i〉⊗ |j〉 = ∑
i

√
ci |ψi〉⊗ |αi〉 = ∑

j

√
dj
∣∣φj
〉
⊗
∣∣β j
〉

(2.100)

with

〈i|A|j〉 = ∑
k

√
ck 〈i|ψk〉 〈αk|j〉 = ∑

k

√
dk 〈i|φk〉 〈βk j|〉 (2.101)

If a time evolution would depend on the decomposition of a density
matrix, then one party in an entangled state could encode information
in his part of the state through preparing a specific decomposition that
would then be discernible for the other party instantaneously through
measurement. This communication channel contradicts relativistic
principles and should therefore be avoided by the theory. One example
of this will be introduced in the next chapter. We will see one way to
achieve nonlinear extensions of quantum mechanics without adding
superluminal signaling in a later section.
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2.5 schrödinger newton equation

One way of extending quantum mechanics non linearly, and also
incorporate classical gravity is to start from the Einstein equation

Gab = 8π
G
c4 Tab (2.102)

with Gab = Rab + gabR. If we assume that gravity is quantized, we
also need to assume that the Einstein tensor is a quantized operator,
i.e. Gab = Ĝab. However, if gravity is assumed to not be quantized, we
have to find an expression of Gab that does not depend on the operator
T̂ab directly [26]. One such option was formulated by Møller [69]and
Rosenfeld [86] independently by rewriting the Einstein equation as

Gab = 8π
G
c4

〈
ψ|T̂ab|ψ

〉
(2.103)

To calculate an evolution equation in a Newtonian regime we use
linearized gravity again

gab = ηab + hab (2.104)

where hab is a small perturbation to the metric. Equation (2.103)
then becomes

2hab = −
16π

c4 G
(〈

ψ|T̂ab|ψ
〉
− 1

2
ηab
〈
ψ|ηρσT̂ρσ|ψ

〉)
(2.105)

In the Newtonian limit the dominant term is 〈ψ|T̂00|ψ〉 which gives

∇2V =
4πG

c2

〈
ψ|T̂00|ψ

〉
(2.106)

where the potential V becomes V = − c2

2 h00. In the linearized theory
the interaction between gravity and matter is given by

Hint =
∫

d3rhabT̂ab (2.107)

Note that the gravitational perturbation hab is not an operator, signi-
fying that gravity is not assumed to be quantized here. Together with
(2.106) we get

Hint = −G
∫ ∫

d3rd3r′
〈ψ|ρ(r′)|ψ〉
||r− r′|| ρ(r) (2.108)
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with T̂00 = - c2ρ
G . For a single particle and the given potential we

arrive at the Schrödinger Newton equation [30, 48–51, 53, 70, 80].

ih̄
∂ψ(r, t)

∂t
= − h̄

2m
∇2ψ(r, t)− Gm2

∫ |ψ(r′, t)|2
||r− r′|| d3r′ψ(r, t) (2.109)

Similar equations have been found in different contexts. The Gross-
Pitaevski equation describes systems of identical bosons in a Bose
Einstein condensate where the nonlinearity observed above stems
from interactions within the condensate. However in this case, the
N-body dynamics are still linear and the center of mass motion is still
described by the free evolution of the linear Schrödinger equation.
If one takes the above equation as fundamental, it also introduces
the nonlinearity for single particles and thereby changing the linear
dynamic of standard quantum mechanics.

A similar form can be derived by introducing the gravitational
interaction of particles within an object with the ansatz ψ(x, t) =

ψ(x1, t) . . . ψ(xN , t) for N particles. The resulting Schrödinger equation
takes the form

ih̄
∂ψ(xi, t)

∂t
= − h̄

2m
∇2ψ(xi, t)−

N

∑
i 6=j;j=1

Gmimj

∫ |ψ(x′j, t)|2

||xi − x′j||
d3x′jψ(xi, t)

(2.110)

which explicitly does not contain the self interaction term i = j.
Calculating the center of mass solution here just leads to the expected
free evolution. Contrary, in the SN equation the self interaction term
remains even for the center of mass, as well as single particle systems.
As Adler pointed out in [4] the interpretation of the self interaction
term needs careful consideration. In the case of two different particles,
the interaction term is simply their gravitational interaction weighted
with the probability of finding the particles at their respective posi-
tions. In the case of self interaction the particle at position xi would
feel the gravitational interaction of itself at x′i weighted with the prob-
ability of finding the particle at x′i. This is a contradiction of the Born
rule. Knowing the location of the particle, the probability to locate
it on a different position should be zero. The interpretation of the
wave function in this context becomes tied to the mass density. This
also has drastic consequences for superposition states, since the addi-
tional nonlinear term introduces self interactions of the wave function.
Any branch of the wave function now is a source of a gravitational
attraction leading to soliton solutions. If one assumes a gaussian state
with sufficient mass, then one can expect a self focusing of the wave
function that counteracts the dispersion of the free evolution. As a
first approximation to gain a qualitative understanding, as well as
a rough guess of the parameters needed to observe such an effect
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we will simply compare the acceleration of the dispersion of a wave
packet with the gravitational acceleration expected for the associated
mass.

Given an initial wave packet

ψ(r, t = 0) =
(
πσ2)− 3

4 e−
r2

2σ2 (2.111)

we want to gain an intuition for the order of magnitude at which
we will expect the self interaction to dominate. Starting from the free
evolution

ψ(r, t) =
(
πa2)− 3

4

(
1 +

ih̄t
mσ2

)− 3
2

e
− r2

2σ2(1+ ih̄t
mσ2 ) (2.112)

we have the peak at rpeak = σ
√

1 + h̄2t2

m2σ4 and its acceleration r̈peak =
h̄2

m2r3
peak

. We can now compare this to the gravitational acceleration

r̈ = Gm
r2 at time t = 0 which occurs due to the self interaction. The self

interaction starts to dominate when the gravitational acceleration is at
the same magnitude as the acceleration of the dispersion. From this

we can calculate a mass m =
(

h̄2

Gσ

) 1
3
. This is the critical mass at which

the two accelerations exactly balance each other. For an initial width
of σ = 100nm we get a mass m = 1.12 · 10−17kg. As an example, let us
consider a silicon sphere with density ρ = 2329kg ·m−3. The radius
of this sphere would be r = 2.2 · 10−7m. This would imply that the
self interaction of a sphere of that radius and a wave packet spread of
similar magnitude as its radius would be an approximately stationary
solution. To make this calculation more rigorous, let us consider the
following ansatz. According to Harrison [53] only negative total energy
of the state can counteract the dispersion. Therefore, it can be used as
a lower bound for the mass needed for collapse. First, the total energy
as given by (2.109) can be written as

E =
h̄2

2m

∫
|ψ(x, t)|2d3x− Gm2

2

∫ ∫ |ψ(x, t)|2|ψ(y, t)|2
||x− y|| d3xd3y (2.113)

Calculating the total energy for a spherically symmetric wavefunc-
tion

E =
2πh̄2

m

∫ ∞

0
dr (∂rψ(r))2

− 8πGm2
∫ ∞

0
dr
(∫

dr′
r′2

r
ψ2(r)ψ2(r′) +

∫ ∞

r
dr′r′ψ2(r)ψ2(r′)

)
(2.114)
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and inserting our initial state (2.111)we arrive at

E =
h̄2

2mσ4 −
2Gm2
√

πσ3
sinh−1(1) (2.115)

Now for the total energy to be negative initially, the mass has to
fulfill

m >

( √
πh̄2

4Gσ sinh−1(1)

) 1
3

≈
(

h̄2

2Gσ

) 1
3

(2.116)

which leads to roughly the same estimate as in our crude example.
So far we have only used rough approximations and lower bounds.

In order to get exact quantitative results, numerics are necessary. This
was done by the author, along the lines of [26, 47] as an implementation
in Mathematica. (Appendix A, mathematica)

The basic idea is to use a Crank-Nicholson scheme in spherically
symmetric coordinates. The wave function ψ(r∆ρ, t∆τ) is discretized
with step sizes ∆ρ, ∆τ. The resulting differential equation becomes

e
i∆τ
2h̄ Hψ(r∆ρ, (t + 1)∆τ) = e−

i∆τ
2h̄ Hψ(r∆ρ, t∆τ) (2.117)

If we linearize the equation we get

ψ(r∆ρ, (t + 1)∆τ) = (Q−1 − 1)ψ(r∆ρ, t∆τ) (2.118)

Q =
1
2

(
1 +

i∆τ

2h̄
H
)

(2.119)

If we solve Qχ(r∆ρ, t∆τ) = ψ(r∆ρ, t∆τ), we can then write the time
evolution as

ψ(r∆ρ, (t + 1)∆τ) = χ(r∆ρ, t∆τ)− ψ(r∆ρ, t∆τ) (2.120)

The Schrödinger Newton equation cannot be seen as an intrinsic
description of the measurement collapse. If the self interaction of
the wave function would be responsible for a definite outcome in
a measurement process, we would run into contradictions with the
outcomes produced by the Born rule of measurement, mentioned
above. This can be seen by looking at Pointer states attributed to
measurement outcomes of a superposition. Consider the following
state

ψ(r) =
1√
2
(ψ1(r) + ψ2(r)) (2.121)
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If we attribute Pointer states to the possible outcomes

ψ(r, R) =
1√
2
(ψ1(r)φ1(R) + ψ2(r)φ2(R)) (2.122)

we can see that these Pointer states would carry appreciable mass
and therefore would evolve according to the Schrödinger Newton
equation. The corresponding final state would then be found at R1+R2

2
which would be the average position. This peculiar effect highlights
the problem of taking the wave function as an effective mass distribu-
tion acting on itself through the potential V. Furthermore, since the
Schrödinger Newton equation is fully deterministic, it cannot contain
an explanation for the random outcomes in a measurement. In that
sense, the Schrödinger Newton equation cannot be seen as an objective
collapse of the wave function. We still need something similar to the
Born rule to interpret the measurement results.

As with all deterministic nonlinear modifications that do not mod-
ify the measurement assumption, the Schrödinger Newton equa-
tion violates non-signaling [12]. This can be best seen by looking
at the following gedankenexperiment. Consider a Stern-Gerlach ex-
periment with a spin-position state. If we assume that the spin part
of the state is not coupled to the position part of the wave func-
tion (the two evolutions of the spatial and spin wave function are
separable), then after the Stern-Gerlach apparatus the state reads
Ψ(x, t,±) = ψ±(x, t)⊗ |z±〉. The effect on the spatial part is governed
by the Schrödinger Newton equation, and manifests itself as a self
interaction that leads to a self focusing of the wave function. If we
compare this to an initial state in spin x direction, we expect a state
Ψ(x, t,±) = 1√

2
(ψ+(x, t)⊗ |x+〉+ ψ−(x, t)⊗ |x−〉) after the appara-

tus. If we plug this into the Schrödinger Newton equation, we can see
a gravitational interaction between the two directions associated with
|x+〉 and |x−〉.

ih̄
∂ψ±(x, t)

∂t
= − h̄

2m
∇2ψ±(x, t)−V(ψ±, x, t)ψ±(x, t) (2.123)

V(ψ±, x, t) =
Gm2

2

∫ |ψ+(x, t)|2
||x− y|| d3y+

Gm2

2

∫ |ψ−(x, t)|2
||x− y|| d3y (2.124)

Apart from the self focusing of ψ+ and ψ− there is also a mutual
gravitational attraction between the two partial wave functions. Their
distance on the screen in a Stern Gerlach experiment therefore is
smaller in this basis compared to the |z±〉−basis. This enables us to
distinguish the two initial preparations. If we consider an entangled
state, with two sides of Stern Gerlach measurements, measuring in one
basis can now prepare the state for the other party in a distinguishable
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way. This enables communication between the two parties independent
of distance and hence faster than light.

The Schrödinger Newton equation is thus no exception of a non-
linear deterministic quantum theory, in that it allows superluminal
signaling.

One particularly interesting way of testing effects of the Schrödinger
Newton equation was introduced by Huan Yang et. al. [103]. Instead
of only considering the evolution without external potential of the
wave function according to the Schrödinger Newton equation, we
consider an additional harmonic potential. This assumption and the
different timescales of the center of mass degree of freedom and the
internal degrees of freedom allows for a separation of the center of
mass equation.

i
∂ψ

∂t
=

(
−∇

2

2M
+

1
2

Mω2
c x2 +

1
2

C(x− 〈x〉)2
)

ψ (2.125)

with C a constant factor given by

C = −1
2

∂2

∂x2

[∫
d3yd3z

ρint(y)ρint(z)
|y− z + x|

]
x=0

(2.126)

or for a homogeneous mass distribution: C = GMρ. This lets us
introduce the Schrödinger Newton frequency ωSN =

√
Gρ. Note that

this frequency is independent of the mass of the test particle. To
achieve higher frequencies, one would have to increase the density
or drop the assumption of a homogeneous mass distribution. If the
mass would be localized around the nucleus of the lattice positions,

one would gain an amplification factor of Λ =
(

dlattice
rnuclei

)3
≈ 103.

One experimental setup then would be to study the time evo-
lution of a squeezed initial state. We expect an additional phase

∆φ = ωct
(

ω2
SN

ω2
c

)
in the rotation of the phasespace ellipse.

In the next section, we will look at a different class of theories in
order to circumvent the faster-than-light signaling, but still employ
nonlinearities within the Schrödinger equation.
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2.6 additional noise , collapse models

We have discussed the effects of nonlinear modifications of quantum
mechanics and the problems arising from it. We can see that in order to
incorporate nonlinearities, we need to prevent the possibility of super-
luminal signaling. This can be done by adding an additional stochastic
term. Models of these resulting nonlinear stochastic equations are
typically known as collapse models.

2.6.1 Properties of collapse models

The first ideas of collapse models was published in 1985 [44] and
subsequent years [42, 43]. These models were designed to answer the
question of an objective transition of microscopic systems to macro-
scopic systems. Or in other words the transition from the unitary
evolution of the state vector in quantum mechanics to the nonlin-
ear collapse in measurements of quantum states. As we discussed
before, nonlinear modifications of the Schrödinger equation can not
describe this transition of microscopic to macroscopic systems. It also
introduces the problem of superluminal signaling, which contradicts
special relativity. Collapse models do not share the effect of superlumi-
nal signaling. In fact, the balance of nonlinear and stochastic additions
precisely prevent superluminal signaling [13]. This property as well
as their flexibility in introducing a specific mechanism for collapse
make them an interesting toy model for regimes in which gravity
related effects might enter. Also, if one entertains the idea that gravity
is indeed a classical field, the coupling of a quantum field with a
classical one would need a consistent description. Collapse models
could be one of the candidates for such an endeavor. It should be
mentioned here that collapse models themselves also suffer from some
shortcomings, especially in the case of a generalization to relativistic
properties. Thus, even if gravity is not quantized, collapse models do
not provide a full description of dynamics in the relativistic regime.
We will have a look at the issues later in this chapter.

On the other hand, if gravity is indeed a quantum field of some
kind, the study of collapse models might still be interesting, albeit
only to refine the region in which possible gravity effects might enter
experiments. Experimental test based on collapse models can also be
seen as tests for standard quantum theory. Ultimately, since the full
description of quantum gravity (or something completely new) is still
eluding physicists, giving more emphasis on experimental tests of
unexplored regimes in order to discover a hint for further progress
seems to be the way forward.

We want to start by introducing the mathematical backbone needed
for the construction of collapse models, Ito stochastic calculus [39].
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2.6.2 Ito Stochastic Calculus

In order to understand stochastic processes, we will start out by
looking at the continuous version of a random walk, Brownian motion.

Let us start by assuming a Random Walk

ζk =
t

∑
k=1

ηk (2.127)

with η being independent, identically distributed values and 〈ηk〉 =
0 as well as 〈〈η2

k 〉 − 〈ηk〉2〉 = 1. In order to have a limited process
over time we are going to rescale this random walk by replacing the
spacing k with k/m such that

ζm
k = cm · ζk (2.128)

with scaling constant cm > 0. Now if our interval t is a multiple of
1/m, the variance changes as

〈〈η2
mk〉 − 〈ηmk〉2〉 = c2

m · 〈〈η2
k 〉 − 〈ηk〉2〉 = c2

m ·m · t (2.129)

In order to have a convergent process independent of spacing m,
cm has to be larger than 1/

√
m. This allows us to define a process ζm

t
such that

ζm
t =

1√
m

ζmt (2.130)

whenever t is a multiple of 1/m, and we interpolate between inter-
vals. This new process has 〈ζm

t 〉 = 0 and 〈〈ζm 2
t 〉 − 〈ζm

t 〉2〉 = t for all
t that are multiples of 1/m. Furthermore, increments of this process
over the interval {k/m, (k + 1)/m} obey

ζm
k+1 − ζm

k =
1√
m

(
ζm(k+1) − ζmk

)
(2.131)

If we now consider the limit process of a continuous motion, the
resulting process Bt should have independent increments Bk+1 − Bk
for non-overlapping intervals with an expectation value of zero and a
variance of tk+1− tk. But since our process is a sum of ηk with 〈ηk〉 = 0
as well as 〈〈η2

k 〉 − 〈ηk〉2〉 = 1 and a rescaling, our increments of the
process converge weakly towards a normal distribution

ζm
k+1 − ζm

k → N(0, tk+1 − tk) (2.132)

We can now formally define the process of Brownian motion as a
probability distribution over the set of continuous functions B : R→ R

satisfying
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1. B(0) = 0

2. ∀s : s ∈ [0, t[⇒ B(t)− B(s) is a normal distribution with mean
0 and variance t− s

3. Intervals Btk − Bsk are independent for non-overlapping intervals
{tk − sk}

One of the key differences to a deterministic process is the difference
in variance we get for Brownian motion. For a deterministic function
we have

∑
i

∆ f 2
i ≤∑ ∆t2 ·max f ′2 ≤ max f ′2 ·∑

i
∆t2 ≤ max f ′2 ·max ∆t · T

(2.133)

which approaches zero for max ∆t → 0 in contrast to Brownian
motion where the variance over an interval {0, T} approaches T. Fur-
thermore, Brownian motion is nowhere differentiable with probability
1. One has to be careful then to define the differential form dBt. In
particular, whenever we add Brownian noise to a system, for example
by describing a stochastic property of a physical system in the form of
a differential equation, we need to make sense of dBt. On every point
along a random walk there is no formal limit converging towards an
interval dBt. Let us first consider a function depending on Bt, f (Bt). If
we want to write the derivative of f we cannot use the derivative of Bt

directly. However we can try to write this as

d f = f ′(Bt) · dBt (2.134)

This statement should follow from the limit of the difference equa-
tion written as a Taylor expansion

f (x + ∆x)− f (x) = ∆x · f ′(x) +
1
2
(∆x)2 · f ′′(x) + . . . (2.135)

where we can claim that the second order terms are negligible for
∆x → 0. But if we replace x by Bt we can see that (∆B)2 does not
approach zero in the limit but rather limBt→0(∆B)2 = ∆t as defined by
the variance of Bt. Because of this, we need to take the second order
term into account which leads to

d f = f ′(Bt) · dBt +
1
2

f ′′(Bt) · dt (2.136)

where we used dB2
t = dt (again from the variance). The equation

(2.136) is known as Ito’s Lemma. In order to see the correct way of
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integrating over a Brownian motion consider the function f (x) = 1
2 x2.

If we use Bt, a stochastic variable, instead of a deterministic variable
x, from Ito’s Lemma it immediately follows that

d f (Bt) = BtdBt +
1
2

dt (2.137)

which, in integral form is

∫ T

0
BtdBt =

1
2

BT −
T
2

. (2.138)

At this point, we want to look at another way of arriving at this result
to gain some extra insight. The integral above can also be written as
a sum similarly to the definition of a Riemann sum for continuous
functions.

∫ T

0
BtdBt = lim

k→∞
∑
k<n

B(tk) (B(tk+1)− B(tk)) (2.139)

We will use the following identity:

B(tk) =
1
2
(B(tk+1) + B(tk))−

1
2
(B(tk+1)− B(tk)) (2.140)

Plugging this into our definition for the integral gives

∫ T

0
BtdBt =

1
2 ∑

k<n

(
B2(tk+1)− B2(tk)

)
− 1

2 ∑
k<n

(B(tk+1)− B(tk))
2

(2.141)

where the first term is simply 1/2(BT)
2 since B0 = 0 and the second

term is again the squared increment, giving 1/2 · T as expected. It
is important to note here that, contrary to the Riemann integral, the
choice of interval matters in the initial definition. If we consider instead
of (B(tk+1)− B(tk)) the interval 1

2 (B(tk+1)− B(tk−1)) we arrive at an
integral of

∫ T

0
BtdBt =

1
2

BT (2.142)

which gets a result closer to the Riemann definition for deterministic
variables. The different choice of interval is known as Stratonovich
calculus. Choosing the interval in the integration however, changes
the properties of the result. For instance, only the Ito definition gives
a martingale as a result for the integral. A martingale is a stochastic
process that is defined through the independence of the conditional
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expectation value of the next event from all previous events except the
present value.

It is important to note that both definitions are interchangeable.
Some differences have to be pointed out when using Ito stochastic

calculus in calculations. Consider the differential in normal calculus

d f (t, x) =
∂ f
∂t

dt +
∂ f
∂x

dx (2.143)

but now with Bt instead of x. The differential form becomes

d f (t, Bt) =

(
∂ f
∂t

+
1
2

∂2 f
∂x2

)
dt +

∂ f
∂x

dBt (2.144)

adding an additional term. Furthermore, if one considers two func-
tions f (t, Bt), g(t.Bt) the differential of the product of two functions
d( f · g) amounts to

d( f · g) = f · dg + g · d f + d f · dg (2.145)

where the additional term d f · dg arises. This term can be attributed
again to the property of (dBt)2 = dt. This rule will come in handy for
the next section. In terms of Stratonovich calculus, since the additional
term in the integral vanishes, the above (2.145) can be written as

d( f · g) = f ◦ dg + g ◦ d f (2.146)

which implies that the Stratonovich product is

f ◦ dg = f · dg +
1
2

d f · dg (2.147)

If we now want to describe the transition from a differential equation
in Ito form

d f = a(t, f ) · dt + b(t, f ) · dBt (2.148)

one finds the corresponding Stratonovich form

d f =

(
a(t, f )− b(t, f )

2
∂b(t, f )

∂ f

)
dt + b(t, f ) ◦ dBt (2.149)

With these mathematical tools, we will now derive a nonlinear
stochastic time evolution in a quantum mechanics setting.
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2.6.3 A stochastic evolution of the state vector

Using the above properties of Ito stochastic calculus, we will now look
at the time evolution of a state vector when we introduce a stochastic
process [9][14, 15, 45]. Such a process will act on the wave function as

d |ψ〉 =
(

C · dt + ∑
i

Ai · dBi

)
|ψ〉 (2.150)

where C is an operator and the Ai are a set of operators. We will, for
simplicity assume that the operators Ai = A are Hermitian operators.
The Bi are a set of random Wiener processes, with the properties

〈〈dBi〉〉 = 0 , 〈〈dBidBj〉〉 = γδijdt (2.151)

and a constant γ. It is important to note, that because of the above
rule (2.145), the norm of |ψ〉 is not preserved. In order to define a
process that has similar properties as the usual Schrödinger descrip-
tion, we have to incorporate the normalization of the state vector
corresponding to a realization of our process Bt. We are interested in
the state vectors |φ〉, which are built from |ψ〉 and their probabilities
are given by multiplying with the square norm || |ψ〉 ||2. If we adopt
this as our physical states, we can see that adding the norm into the
description will give us the nonlinearity found in collapse models. The
physical probability given a realization B(t, t0) then is

Pφ(B(t, t0)) = Pψ(B(t, t0))|| |ψ〉 ||2 (2.152)

for a given realization of Bt. Now, because of the linearity of our
stochastic evolution (2.150) this property has to hold up at all times.
Therefore, we can write the relation between the probabilities given
an infinitesimal change Pψ = Pψ(dBt), Pφ = Pφ(dBt) as

Pφ = Pψ

(
1 + ||d |ψ〉 ||2

)
(2.153)

But the assumption that we can do this process at any given time
means that the total probability Pφ has to be 1, which implies that in
order to have this property, the average of the norm ||d |ψ〉 ||2 has to
be zero. We can now look at the differential change of the norm of |ψ〉,
using that it should be zero on average with (2.145) and (2.150).

||d |ψ〉 ||2 = (d 〈ψ|) · ψ + ψ · (d |ψ〉) + (d 〈ψ|) · (d |ψ〉) !
= 0 (2.154)

where we can extract that

C + C† = −1
2

γA2 (2.155)
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and write (2.150) as

d |ψ〉 =
[(

C− C†
)
· dt + A · dB− γA2 · dt

]
|ψ〉 . (2.156)

We can associate the anti-Hermitian part of the stochastic equation
as our Hamiltonian operator −i/h̄ H.

We can rewrite the norm, now only depending on the stochastic
part, as

d|| |ψ〉 ||2 = 2 〈ψ|A |ψ〉 · dB (2.157)

which also changes the physical probability distribution to Pφ =

Pψ(1 + 2 〈ψ|A |ψ〉 · dB) for an infinitesimal time step. In order to guar-
antee that the norm of our normalized state vectors |φ〉 stays constant
during their time evolution, we can see from (2.157) that replacing the
operators A with A− 〈φ|A |φ〉 leads to the desired result, giving

d |φ〉 =
[
− i

h̄
H · dt + (A− 〈φ|A |φ〉) · dB− γ (A− 〈φ|A |φ〉)2 · dt

]
|φ〉

(2.158)

for our physical state vector. We can see from this, that demanding
a time evolution that is stochastic in nature, together with the normal-
ization condition to extract the physical states leads to a nonlinear
Schrödinger equation with the physical probabilities described by Pφ.

Using (2.149), we can also write this result in terms of Stratonovich
calculus through the stochastic process V(t) with the properties

〈〈Vi(t)〉〉 = 0 , 〈〈Vi(t1), Vj(t2)〉〉 = γδijδ(t2 − t1) (2.159)

giving

d
dt
|φ〉 =

[
− i

h̄
H

+ (A− 〈φ|A |φ〉)V(t)− γ (A− 〈φ|A |φ〉)2

+γ
(
〈φ|A2 |φ〉 − (〈φ|A |φ〉)2

) ]
|φ〉 (2.160)

with Bt =
∫ t

0 V(τ)dτ.
From (2.158) we can also calculate the density matrix representation

by considering the equation for a projector Pφ = |φ〉 〈φ| which reads
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dPφ =

[
− i

h̄
[
Pφ, H

]
· dt

+
{
(A− 〈φ|A |φ〉) , Pφ

}
· dB− γ

[
A2, Pφ

]
· dt + 2γAPφA · dt

]
(2.161)

and defining the density matrix of the ensemble average for a
stochastic process Bt as 〈〈Pφ〉〉B which averages over the term {. . .} · dB
and thus gives

d
dt

ρ = − i
h̄
[ρ, H]− γ [A, [A, ρ]] (2.162)

which is independent of the specific decomposition of the density
matrix.
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2.6.4 Continuous Spontaneous Localization (CSL)

We derived the general form of collapse models which are driven by
a brownian stochastic process. The next step will be to answer the
question what the Hermitian operators A (see (2.150) represent. The
collapse of the wave function in these models was initially designed
to explain the transition from quantum mechanics for microscopic
systems to classical physics for macroscopic systems, meaning that
the superpositions of macroscopic objects should be suppressed. Su-
perpositions with probabilities of the form

|ψ(x, t = 0)|2 =
1
2

√
πσ2e−

(x−x1)
2

2σ2 +
1
2

√
πσ2e−

(x−x2)
2

2σ2 (2.163)

should localize at a position x1 or x2 at time scales such that micro-
scopic superpositions are preserved over long periods of time, while
macroscopic systems should localize rather quickly. The formulation
of the time scale is kept vague on purpose to emphasize that this time
scale depends on the chosen properties of our collapse model.

We will first introduce one of the most considered models, CSL
(Continuous Spontaneous Localization) [13][14, 15, 32, 33, 42–44]. First,
let us consider one particle with a given mass and describe its mass
with a mass density operator

M(x) =
m
m0

∫
d3y g(x− y)a†(y)a(y) (2.164)

where we introduce a smearing function

g(x) =
( α

2π

)3/2
e−

α
2 x2

(2.165)

of the mass of the particle. Notice that in doing so we introduce a
free parameter into our model. Because of the normalization of this
function we recover the total mass operator by integrating over the
whole space M =

∫
d3x M(x). We can introduce this operator now

into equation (2.158) to get

d |φ〉 =
[
− i

h̄
H · dt +

∫
d3x (M(x)− 〈M(x)〉) dB(x)

−γ

2

∫
d3x (M(x)− 〈M(x)〉)2 dt

]
|φ〉 (2.166)

and, as above, the corresponding master equation

d
dt

ρ = − i
h̄
[ρ, H]− γ

∫
d3x [M(x), [M(x), ρ]] (2.167)
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for the average over the stochastic process Bt. We can also redefine
our properties of the stochastic process and absorb g(x) into it yielding

〈〈dB(x)〉〉 = 0 , 〈〈dB(x)dB(y)〉〉 = γD(x− y)δ(x− y)dt (2.168)

with D(x) =
(

α
4π

)3/2 e−
α
4 x2

. The parameter λ = γ
(

α
4π

)3/2 is often
used instead of the parameter γ and has units of frequency. Also
rc =

1√
α

with unit of length is often preferred in the literature. As can
be seen from this, the CSL model has two free parameters.

We will also introduce the position representation for the density
operator which is

d
dt
〈x| ρ |y〉 = − i

h̄
〈x| [H, ρ] |y〉 − λ

(
1− e

− (x−y)2

4r2
c

)
〈x| ρ |y〉 (2.169)

This can easily be generalized for multiple particles by summing
over individual particle mass operators M(x). The above form shows
how CSL is suppressing off diagonal terms in the density matrix with
frequency λ and collapse width rc. We want to emphasize here the
difference to standard decoherence models. The suppression of off-
diagonal elements here is similar to the representation in the master
equation (2.40). The effect of collapse however, is not an ensemble
effect, given by the interaction with an environment, but an intrinsic
property of the model on the state vector level. The collapse of the
wave function as a measurement property (the von-Neumann rule)
is absorbed into the evolution. The resulting state vector equation is
nonlinear.
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2.6.5 Collapse from gravity

The connection of stochastic properties of the quantum state evolution
and gravity was already made as early as 1966 by Karolyhazy [60,
61], who noted that in order to have a transition between a quantum
mechanical time evolution and the classical properties of general
relativity one has to consider uncertainty relations in position and
time for trajectories in Minkowski space (e.g. world lines). We want to
introduce the basic argument here, following [37].

First, we will consider the world line segment s = cT, which is
considered in a reference frame such that |v| = 0 over the whole
interval. The overall spread of a wave function initially is considered
to be ∆x0. Now the uncertainty of position and velocity of the object
has to obey

∆x∆v ≥ h̄
2M

(2.170)

From there we can write the corresponding minimum spread in
position after time T as

∆x = ∆vT ≈ h̄
2M∆x0c

cT (2.171)

We also note that the spread ∆x should not be smaller than the
corresponding gravitational Schwarzschild radius GM/c2. Using this
property and assuming the minimum spread ∆x = ∆x0 after time T
at the end points of our world line segment as well as the fact that
these spreads also represent the minimum spread of the segment itself,
∆s = ∆x, we can calculate an expression for the uncertainty (∆x)2.

(∆x)2 = (∆s)2 ≈ h̄
2Mc

cT =
h̄G

2∆sc3 s (2.172)

(∆s)2 ≈
(

h̄G
c3

)2/3

s2/3 (2.173)

Or, equivalently, if we use s = cT we can write

(∆T)2 ≈
(

h̄G
c5

)2/3

T2/3 (2.174)

giving the uncertainty for an interval T. We are also interested in
the uncertainty for the synchronization of two world lines separated
by a distance r, both at the same velocity |v| = 0. This corresponds to
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accumulating an uncertainty over a time interval 2T = 2r
c . Using this,

we arrive at

(∆T)2
syn ≈

(
h̄G
c5

)2/3 ( r
c

)2/3
(2.175)

Now, these uncertainties should correspond to the spread of suitable
operators of time. We will therefore define the mean value of a time
operator t̂(x, t) as

〈t̂(x, t)〉 = t (2.176)

and for convenience t̂(x, t) = t− τ̂(x, t) with 〈τ̂〉 = 0. Accordingly,
our time interval becomes T = 〈t̂(x, t′) − t̂(x, t)〉 = t′ − t, and our
uncertainty

(∆T)2 = 〈(t̂(x, t′)− t̂(x, t)− T)2〉 =

〈((τ̂(x, t′)− τ̂(x, t))2〉 ≈
(

h̄G
c5

)2/3

T2/3 . (2.177)

We can do the same for two world points at the same time t but
different positions x′, x with r = |x′ − x| to get a similar expression

(∆T)2
syn = 〈((τ̂(x′, t)− τ̂(x, t))2〉 ≈

(
h̄G
c5

)2/3 ( r
c

)2/3
. (2.178)

It is important to note that the association of an operator with time
as done here, has distinct consequences on the evolution of wave
functions in the Schrödinger equation. This can be seen by considering
the global phase associated with the mass of an object, which in the
standard Schrödinger evolution does not contribute to any physical
observable

eiΦ(t) = e−
ic2
h̄ ∑k Mkt (2.179)

However, we see that in our identification of an operator with our
parameter of time, we now have to write

eiΦ(t)eiΦ̂(x,t) = e−
ic2
h̄ ∑k Mk(t+τ̂(x,t)) (2.180)

introducing a phase contribution depending on position. We can
write the uncertainty in phase

∆Φ(x′, x, t) = 〈(Φ̂(x′, t)− Φ̂(x, t))2〉 =

=
c4

h̄2 ∑
k,l

Mk Ml〈(τ̂(x′k, t)− τ̂(xk, t))(τ̂(x′l , t)− τ̂(xl , t))〉 (2.181)
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and finally using (2.178)

∆Φ(x′, x, t) =
(

h̄G
c5

)2/3 c2

h̄2 ∑
k,l

Mk Ml

(
|x′k − xl |2/3

−1
2
|x′k − x′l |2/3 − 1

2
|xk − xl |2/3

)
(2.182)

where we have effectively no time dependence anymore. The relative
phase uncertainty introduced here is only dependent on the distance
r = |x′ − x| and can be interpreted as follows: As long as ∆Φ �
π ≈ 1 the wave functions depending on position are very much
coherent to each other, the time evolution coincides with the standard
Schrödinger evolution. However, if ∆Φ � π ≈ 1 we have no coherent
evolution of the wave function anymore, and expect a mostly classical
evolution. This can be made more precise by introducing coherent
cells, defined by the transition point ∆Φ ≈ 1 where the quantum to
classical transition is expected. We can write the uncertainty in phase
for a single particle as

∆Φ(a = |x′ − x|) =
(

h̄G
c5

)2/3 1
Lcompton

a1/3 (2.183)

with Lcompton = h̄
Mc . For ∆Φ ≈ 1 we get a critical length ac:

ac = L3
(

h̄G
c5

)−4/3

(2.184)

For systems built up by multiple indistinguishable particles we have
to consider two regimes, a� R for R being the characteristic radius
of the composite system, and a � R. If a displacement of center of
mass is then a displacement of each individual constituent by a, we
can just consider the center of mass displacement and sum over the
number of involved particles N. In the case of N � 1, we can then
replace the sum with an integral

∆Φ(x′, x) =
(

h̄G
c5

)2/3 M2
0c2

h̄2
N2

V2

∫
d3r d3r′ (|r′− r− a|2/3− |r′− r|2/3)

(2.185)

which for a� R amounts to an integral over a2/3 since a� |r′ − r|
and therefore

∆Φ(x′, x) ≈
(

h̄G
c5

)2/3 a1/3

L
(2.186)
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with L = h̄
M0 Nc = h̄

Mc the Compton wavelength corresponding to
the total mass. For the case a� R we expand |r′ − r− a|2/3 as a taylor
series to see that the leading term is proportional to a2. We arrive at

∆Φ(x′, x) =
(

h̄G
c5

)4/3 1
R2/3

a
L

(2.187)

for the relative phase. Again we can calculate the critical length ac

for these cases by putting ∆Φ ≈ 1. The resulting expressions for ac

mark the boundary for the quantum to classical transition. In the case
of ac � R the center of mass wave function can have an uncertainty of
up to ac, much larger than R without experiencing decoherence. On
the other hand, if ac � R if the wave function has an uncertainty of
the order of R or larger the decoherence becomes dominant, effectively
creating a classical time evolution.
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2.6.6 Penrose Model

One possible cause for a change of the usual unitary behavior of
quantum mechanics could be due to a gravitational effect. Diosi and
Penrose [33, 79] introduced a model, which links the collapse of the
wavefunction to the inability to superpose different space times. Since
for every state with a sufficient mass, a superposition state would take
the form

λ|ψ〉|Gψ〉+ µ|φ〉|Gφ〉 (2.188)

where |Gψ〉 and |Gφ〉 denote the state of the stationary gravitational
field with all its internal degrees of freedom. Since there is a superpo-
sition of different states of the gravitational field, Penrose argues that
we have a superposition of two spacetime geometries. In that context,
the meaning of a stationary state is not well defined anymore, since
different space times lead to different time evolution operators. The
difference between these two spacetimes can, according to Penrose,
be quantified by the difference of the two gravitational potentials
integrated over 3-space for a constant t.

∆E =
∫
(∇Φ−∇Φ′)2d3x =

− 4πG
x (ρ(x)− ρ(x′))(ρ(y)− ρ(y′))

|x− y| d3xd3y (2.189)

A similar conclusion was drawn by Diosi, who incorporated this
idea within the framework of collapse models [33]. From this quantity,
a typical collapse time for a given mass can be calculated, which is
just t = h̄

∆E .

2.6.7 Diosi-Penrose Model

As seen above, motivations for a modification of quantum mechanics
can be found by incorporating properties of gravity into the theory.
Another approach along the lines of Karolyhazy was introduced by
Diosi [31]. Similar to above, we start with an uncertainty relation, the
uncertainty relation for the Newtonian gravitational field.

Different to the above assumption we take the minimum spread in
(2.171) as given by the size of a clock traveling along the world line
∆x0 ≈ R. The resulting expression changes to

(∆s)2 ≈ h̄G
c3

s
R

(2.190)

If we now consider the uncertainty of the metric tensor gab of a weak
gravitational field, we have only one component different from the
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Minkovski metric: g00 = 1− 2φ/c2. In a flat background the average of
the potential φ = 0 and the term in g00 only represents the fluctuations
of the metric. Over an interval T the contribution of fluctuations is
simply the space and time average of the fluctuations of the metric

〈〈∆g00〉〉R,t ≈ 〈〈φ〉〉R,t /c2 · s ≈ ∆s (2.191)

Combining (2.190) and (2.191) finally gives us the minimum uncer-
tainty

〈〈φ〉〉R,t =

√
h̄G
RT

This uncertainty gives way for an interpretation of the potential φ(x, t)
as a stochastic variable. In doing so, one can propose the properties

〈φ(x, t)〉 = 0 (2.192)

and

〈(∇φ(x, t)2)〉 − 〈∇φ(x, t)〉2 ≈ h̄G
R3πT

(2.193)

which for the additional assumption of a white noise stochastic
variable gives the correlation function

〈φ(x, t)φ(x′, t′)〉 = h̄G|x− x′|−1δ(t− t′) (2.194)

for the gravitational potential. The corresponding Schrödinger equa-
tion is then given by

dψ

dt
= − i

h̄

(
H0 +

∫
d3x φ(x, t)M(x)

)
ψ (2.195)

with the mass operator M(x). Now since the potential φ is a stochas-
tic variable, it is natural, as in the CSL model, to look at the master
equation for the density operator ρ, where ρ = 〈ψψ†〉 is the average
over the stochastic process. From there we can use our correlation
(2.194) to calculate the master equation

d
dt

ρ = − i
h̄
[H0, ρ]− G

2h̄

∫
d3xd3x′

1
|x− x′| [M(x), [M(x), ρ]] (2.196)

As above we will look at the position representation of this equation
which turns out to be

〈
X| d

dt
ρ|Y
〉

= − i
h̄
〈X| [H0, ρ] |Y〉 − 1

τ(X, Y)
〈X|ρ|Y〉 (2.197)
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where the factor 1/τ(X, Y) is given by

1
τ(X, Y)

=
G
2h̄

∫
d3xd3x′

(MX(x)−MY(x) (MX(x′)−MY(x′)
|x− x′| (2.198)

and MX(x) is the mass density corresponding to a configuration
given by a state |X〉. One possible representation would be to look
at spherical objects with mass M and radius R, and use center of
mass coordinates. Our mass density function can then be written as a
homogeneous mass distribution over the whole sphere

MX(x) =
m
V

θ(R− |x− X|) (2.199)

which, when plugged into our definition for the dampening factor
(2.198) yields

1
τ(X, Y)

= h̄
1

(U(|X−Y|)−U(0))
(2.200)

where U(r) is the gravitational pair potential [79]

U(r) = −Gm2
∫

z,z′≤R

d3zd3z′

|z− z′ + r| (2.201)

and can be approximated in the regime of r� R and r� R with

U(r) ≈ −Gm2

R

(
6
5 −

1
2

r2

R2

)
|r| � R

U(r) ≈ −Gm2

|r| |r| � R
(2.202)

To put this model into context with the above introduced stochastic
models and their formalism, we will also introduce here an alternative
formulation leading to the same evolution of the density operator ρ.
As above, we introduce a white noise field Bt with

〈〈dB(x)〉〉 = 0 , 〈〈dB(x)dB(y)〉〉 = G
h̄

1
|x− y|dt (2.203)

where the correlation function is similar to (2.194) and we can write
the stochastic equation

d |ψ〉 =
[
− i

h̄
Hdt − G

2h̄

∫
d3xd3y

1
|x− y|

(M(x)− 〈ψ|M(x) |ψ〉) (M(y)− 〈ψ|M(y) |ψ〉) dt

+
∫

d3x (M(x)− 〈ψ|M(x) |ψ〉) dB(x)
]
|ψ〉 (2.204)
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which yields the same master equation (2.196) for the averaged
density operator ρ.

This type of collapse models seems to be parameter free, giving
a complete description of the state vector collapse embedded in the
standard quantum evolution. However, this is not true. The model still
requires an implicit parameter, a length scale describing the confine-
ment of the mass distribution. As we will discuss in the next part, this
model does not conserve energy. In fact, the energy increase in this
model is unacceptably high. This can be seen by calculating

〈H〉 = Tr (Hρ(t))

using (2.196). The resulting energy increase is [42]

d〈H〉
dt
≈ Gh̄m

R3

which gives dt〈H〉 ≈ 10−26 J/s for a single nucleon. In case of a
macroscopic object with n ≈ 1023 particles the energy increases pro-
portionally, giving dt〈H〉 ≈ 10−3 J/s. This enormous energy increase
was not detected in any experiments.
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2.6.8 Energy non-conservation

As we have seen above, the additional mechanism of collapse leads to
an energy increase on average [42]. This can be pictured by the idea
that every interaction with the noise field can be interpreted as a “kick”
to the system that changes its momentum on average. The decoherence
term is similar to the one in (2.40) but the dissipation term in collapse
models is missing. This term is crucial in standard decoherence to
dissipate energy to the environment, leading to a state of equilibrium.
Since there is no explicit environment in collapse models, the energy
is trapped in the system. This leads to a non-conservation and increase
of energy.

In order to find an expression for this increase, we will return to
equation (2.169), following from our master equation

d
dt

ρ = − i
h̄
[ρ, H]− γ

∫
d3x [M(x), [M(x), ρ]] (2.205)

for the CSL model. We will restrict ourselves to one dimension for
simplicity here, giving the equation in position representation

d
dt
〈x| ρ |y〉 = − i

2h̄m

(
∂2

∂x2 −
∂2

∂y2

)
〈x| ρ |y〉−λ

(
1− e

− (x−y)2

4r2
c

)
〈x| ρ |y〉

(2.206)

for the time evolution of the density matrix. The formal solution of
this equation is given by [43]

〈x| ρ |y〉 = 1
2πh̄

∫ ∞

−∞
dk
∫ ∞

−∞
dze−

i
h̄ kzF(k, x− y, t) 〈x + z| ρs |y + z〉

(2.207)

with

F(k, x, t) = exp

(
−λt

(
1− 1

t

∫ t

0
dτ e

(x−kτ/m)2

2r2
c

))
(2.208)

a characteristic function with properties F(0, 0, t) = 1, ∂kF(0, 0, t) =
0, ∂qF(0, 0, t) = 0, ∂2

k F(0, 0, t) = − λ
6m2r2

c
t3, ∂2

qF(0, 0, t) = − λ
2r2

c
t and

∂q(∂kF(0, 0, t)) = λ
4r2

c
t2. ρs signifies the solution of the standard Schrö-

dinger equation without the additional collapse term. For λ = 0
we recover the solution 〈x| ρ |y〉 = 〈x| ρs |y〉. From this, calculating
the expectation values of x̂ and p̂ can be done rather easily through
calculating the trace Tr (x̂ρ), which leads to the expressions

〈x̂〉 = 〈x̂〉s (2.209)
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〈
x̂2〉 = 〈x̂2〉

s +
λ

6m2r2
c

t3 (2.210)

〈 p̂〉 = 〈 p̂〉s (2.211)

〈
p̂2〉 = 〈 p̂2〉

s +
λ

2r2
c

t (2.212)

for the expectation values and squared expectation values respec-
tively. This implies that the variances have deviations from the stan-
dard Schrödinger evolution. The variance of the momentum operator
also implies that

〈E〉 =
〈

p̂2〉
2m

= 〈E〉s +
λ

4mr2
c

t (2.213)

which increases linearly in time. The given result here is for a single
particle. However, it can be shown that the same result holds for
multiple particles and scaling with the mass of the system.

To give an alternative way of reaching this result, we will calculate
the transition of a system with energy Ei = h̄ωi initially to an energy
E f = h̄ω f after the collapse interaction has taken place. A similar
calculation was done in [7] using the idea, that the collapse effect can
be written as a perturbation on the Hamiltonian that describes the time
evolution of the system (see also [6]). This can be done due to a curious
ambiguity in the representation of the density matrix. If the additional
noise term is chosen to be either imaginary or real valued on the
state vector level the density matrix representation remains the same.
However, on the level of the state vector, choosing an imaginary noise
does not result in a collapse representation. Nevertheless, the change
of the energy rate of the system remains the same in both descriptions,
giving us a tool to calculate the change in energy through perturbation
of the Hamiltonian.

In order to see this, let us consider the following generalization of
(2.158) of the state vector evolution

d |φ〉 =
[
− i

h̄
H · dt + (χA− χRe 〈φ|A |φ〉) · dB

−γ
(
|χ|2A2 − 2χχReA 〈φ|A |φ〉+ χRe (〈φ|A |φ〉)2

)
· dt
]
|φ〉

(2.214)
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with an additional phase factor of χ = χRe + iχIm. Now continuing
with calculating the stochastic average of an operator Pφ to get the
master equation we get

d
dt

ρ = − i
h̄
[ρ, H]− γ|χ|2 [A, [A, ρ]] (2.215)

which only depends on the absolute value of χ. This means that
we can choose χ = i and simplify our state vector evolution equation
without changing its physical predictions. Specifically, the evolution
equation of the state vector becomes linear, meaning the terms con-
taining the averages 〈φ|A |φ〉 drop out. This also lets us rewrite the
Hamiltonian by incorporating the stochastic part which reads

d |φ〉 =
[
−i
(

1
h̄

H −A
dB
dt

)
· dt− γA2 · dt

]
|φ〉 (2.216)

and resulting in the Hamiltonian H + Hp = H −A dB
dt . We can use

this to rewrite the Hamiltonian for the effective CSL model with χ = i,
giving us [6]

Hp = −
∫

d3xM(x)
dB(x)

dt
(2.217)

where we used M(x) from (2.165) and our usual noise defined by
(2.151) and the stochastic average of dB(x)

dt
dB(x)

dt′ given by

〈〈
dB(x)

dt
dB(y)

dt′

〉〉
=

γ

2π

∫ ∞

−∞
e−ω(t−t′)δ3(x− y) (2.218)

which reduces to (2.151) through integration over t′. From this we
can write down the transition amplitude associated with our pertur-
bation

z f i(t) = −
i
h̄

∫ t

0
Hpeiω f it′dt′ (2.219)

which we can now use to calculate the expectation value with
respect to the noise of our energy 〈〈E(t)〉〉 = 〈〈∑ f h̄ω f i

∣∣z f i(t)
∣∣2〉〉.

Since we are only interested in the energy increase for white noise, our
calculation simplifies compared to [7] in that our collapse parameter
λ is independent of ω. This simplifies the noise term dB

dt and we arrive
at the energy gain rate

t−1〈〈E(t)〉〉 = r3
c

π3/2m2
n

∫
d3y ∑

f
e−r2

c y2
λh̄ω f i

∣∣∣∣∣∣
(

∑
l

mleiy·xl

)
f i

∣∣∣∣∣∣
2

(2.220)
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for large timescales t. In order to evaluate the matrix element
∑l mleiy·xl we consider the simplest case of only one family of atoms
in a lattice, such that the masses of every lattice point are identical. We
also notice that due to the exponent e−r2

c y2
in (2.220) every displacement

smaller than rc will be suppressed. If we now transfer into coordinates
that represent the unperturbed position and displacements, e.g. xl =

rl + ul we can see that displacements will be suppressed and we can
replace the part eiy·ul through its taylor expansion eiy·ul ≈ 1 + iy · ul .
The displacement ul represents the phonons in our lattice and we
can write it in terms of creation and annihilation operators. Again,
following the notation of [7] and assuming that we initially are in the
zero phonon state, we get

ul =
Ω

8π3 (h̄M)1/2 ∑
j

∫ d3k
(2ωj(k))1/2 e∗(j)(k)eik·rl a†

j (k) (2.221)

neglecting aj(k). Ω represents the unit cell volume. Evaluating all
the integrals and using ∑l ei(q−k)·rl = 8π3

Ω δ3(q− k) we finally arrive at

〈〈E(t)〉〉 = 3
4

h̄2λM
m2

Nr2
c

t (2.222)

for the energy gain rate. This linear increase in energy over time is
a distinct feature of collapse models with white noise and introduces
a way of testing these models by searching for this heating effect
in isolated quantum systems. We will come back to experiments
searching for this effect in the later chapters.



56 theory background, decoherence

2.6.9 Modifications to accommodate energy conservation

As we have seen in the last part, collapse models do not conserve
energy. However, this “flaw” in the model can be overcome by con-
sidering more complex approaches. Let us introduce two variants of
how this can be done. The first we are going to talk about will be
the introduction of non-white noise instead of the usual white noise
assumption.

One important property of white noise is, that it is Markovian,
since its correlation function is zero for any nonzero time interval. So,
modifying the underlying noise will result in a non-Markovian model
[78]. Now, how can a non-white noise influence the expectation value
of the energy gain? Let us consider the above calculation for white
noise (2.151) and its correlations. We introduce a dependence of γ on
frequency so we can write the stochastic average of dW(x)

dt
dW(x)

dt′ as [7]

〈〈
dW(x)

dt
dW(y)

dt′

〉〉
=

1
2π

∫ ∞

−∞
γ(ω)e−ω(t−t′)δ3(x− y) (2.223)

and thus introduce a colored correlation. As we mentioned above,
this hinges on the property to replace the underlying dynamics of
collapse models with a description of an effective linear stochastic
equation that recovers the same properties of the master equation as
the collapse stochastic equation does. That this is in fact the case was
shown in [4], where this property holds for a first order approximation
in γ. The effective linear stochastic evolution equation reads

d |φ〉 =
[
− i

h̄
H + χAdW(x)− 2

√
γχReA

∫ t

0
dsDij(t, s)

δ

δ dW(x)
ds

]
|φ〉

(2.224)

where the last part in the integral is the functional derivative with
respect to the noise field dW(x)

dt . The last part in this effective equation
is related to the fact that we need to have a normalized expectation
value with respect to the noise dW. This implies that the last part in
(2.224) comes about through the Furutsu-Novikov formula, to give the
general form of an expectation value of a functional times the noise
dW
dt . With this equation, one can show [4] that to first order in γ this

leads to a master equation of the form

d
dt

ρ = − i
h̄
[H, ρ] + |χ|2γ

∫ t

0
dsDij(t, s) [A(t)ρA(t− s)

+A(t− s)ρA(t)−A(t)A(t− s)ρ− ρA(t− s)A(t)]] (2.225)

which is non-Markovian and again, does only depend on the abso-
lute value of χ allowing us to use χ = i to recover a linear effective



2.6 additional noise , collapse models 57

stochastic equation for the density matrix. Also, if we assume no
correlations in time for our noise, Dij reduces to the white noise cor-
relations, giving us the expected structure, since A(t− s) = A(t). We
can thus carry out the same calculation as in the above chapter [7] to
arrive at the energy gain rate

〈〈E(t)〉〉 = 3
4

h̄2λnw M
m2

Nr2
c

t (2.226)

and

λnw =
2

3π3/2

∫
d3qe−r2

c q2 q2

rc
λ(ωL(q)) (2.227)

where λ(ωL(q)) comes from the factor q · e∗(j) which singles out a
longitudinal phonon with frequency ωL(q). Now if the noise intro-
duced has a cutoff below the frequency ωL(q), where we have |q| ≈ 1

rc
we will get a strongly reduced energy gain rate. This becomes relevant
in the context of experiments in which systems with high effective
phonon frequencies are used to test collapse models. Specifically tests
using x-ray radiation of free electrons in a medium have very high
characteristic frequencies and we will have a closer look at those in a
later chapter.

The second approach is to introduce dissipation into the model.
The typical collapse operator does not take into account any form of
dissipation. In order to introduce this feature into the collapse model
[91], we have to revisit the collapse operator. It was suggested in [90]
to replace the collapse parameter in the standard master equation of
the CSL model (2.166) with

L(y) = ∑
j

mj

(1 + k j)3

∫ dx
(
√

2πrc)3
e
− |x−y|2

2r2
c (1+kj)

2 a†
j (x)aj

(
1− k j

1 + k j
x +

2k j

1 + k j
y
)

(2.228)

which is not a self adjoint operator anymore. The factor k j =
h̄

2mjvrc

with a velocity v is introduced to represent the dissipation property.
As can be seen, if v → ∞ we recover the standard CSL operator.
It is helpful to also introduce the momentum representation of this
operator

L(y) = ∑
j

mj

(2πh̄)3

∫
dPdQa†

j (P+Q)e−
i
h̄ Q·ye−

r2
c

h̄2 (|(1+k j)
2Q+2k jP|2)aj(P)

(2.229)
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which simplifies for one particle to

L(Q, P) =
m

(2πh̄)3

∫
dQe−

i
h̄ Q·xe−

r2
c

h̄2 (|(1+k)2Q+2kP|2) (2.230)

such that we can write the master equation for one particle as

d
dt

ρ = − i
h̄
[H, ρ] +

γ

m2
0

L(Q, P)ρL†(Q, P)− 1
2

{
L(Q, P)L†(Q, P), ρ

}
(2.231)

which is of the Lindblad form. From this equation we can directly
compute the mean energy term by calculating H(t) = Tr

(
P2

2m ρ
)

. Since
H commutes with any function of the momentum P and
e−

i
h̄ Q·xP2e

i
h̄ Q·x = (P + Q)2 we get the expression

d
dt

H(t) =
γm

2(2πh̄)3m2
0

∫
dQ Tr

[
e−

r2
c

h̄2 (|(1+k)2Q+2kP|2) (|Q|2 + 2P ·Q
)

ρ

]
(2.232)

and from there integrating over Q gives

d
dt

H(t) =
3h̄2λm

4(1 + k)5r2
c m2

0
− 4kλm2

(1 + k)5m2
0

H(t) (2.233)

for the mean energy. Solving this differential equation then gives us

H(t) = e
− 4kλm2

(1+k)5m2
0

(
H(0)− 3h̄2

16kmr2
c

)
+

3h̄2

16kmr2
c

(2.234)

where we now avoid the divergence of the mean energy and instead
see an asymptotic behavior for t → ∞. This asymptotic term can be
associated with a temperature, since we can write 3

2 kBT = 3h̄2

16kmr2
c

and

using k = h̄
2mvrc

to get

T =
h̄v

4kBrc
(2.235)

which is only infinite in the limit v → ∞ or k → 0 which recovers
our standard white noise CSL model. This is similar to (2.40) where
the dissipation term governs the equilibration with an environment.
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2.6.10 Parameter dependence

We have seen that all variations of collapse models have one or more
parameters that are undefined by the theory itself. These parameters
can in principle be chosen at will and are only bounded by experiments
and theoretical arguments restricting them. We will have a closer look
at these restrictions and how they influence the search for experiments
to test collapse models.

We will start off with the CSL model parameters λ and rc. These
parameters represent a rate and length respectively. For the collapse
length rc we choose a value that represents the transition between the
quantum and classical world, where superpositions are suppressed
at a reasonably large scale while allowing quantum behavior at a
microscopic scale. It is easy to picture that a collapse length of the
order of a nucleus would collapse any massive quantum system in an
interval of that size. Interferometric experiments would therefore lose
any property of interference rather quickly [41–43]. The only way to
compensate would be to choose a very small collapse rate, rendering
collapse models rather useless, as minuscule collapse rates would also
not have an effect on larger scales. On the other hand, choosing your
collapse length to be macroscopic would lead to possible macroscopic
superpositions not collapsing, since if we choose for example rc to be
of the size of one meter, we would not collapse superpositions of that
size in a reasonable time scale.

To give this a more quantitative basis, let us go back to (2.169) where
our rate of collapse, in terms of reduction of off diagonal terms in the
position representation, was given by

ΓCSL = λ

(
1− e

− x2

4r2
c

)
(2.236)

which is proportional to λ for length scales of x ? rc. For a number
of particles n within a radius of rc and clusters of particles N that are
larger than rc the rate is approximately [4]

ΓCSL u λn2N
m2

p

m2
N

(2.237)

which is a good approximation for some estimates of the collapse
strength if compared to experimental setups. Specifically, following
the argument of Adler [3], the idea of collapse models is to reduce
the wave function onto appropriate eigenvalues in the position basis,
based on the concept of macroscopic behavior. To indeed recover an
effective classical description for macroscopic systems, the transition
region from quantum to classical physics has to explain every available
phenomenon falling into this region. Adler pointed out, that specif-
ically the process of latent image formation in analog photography
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should constitute a process with collapse properties. The basic idea is,
that the process of photon interaction with the photosensitive emul-
sion happens independently from the development of the photograph.
So either the quantum nature of the photon track within the emulsion
is preserved until the process of development, or the collapse of the
photon track to one trajectory is completed independently. In the latter
case, the amount of involved atoms and the time scale of the process
create a bound on collapse parameters. We want to stress here, that the
resulting image relies on an explicit measurement of the photon state,
invoking the same fundamental questions of the problem of outcomes
in a measurement. However, the whole imaging process does not
contradict other interpretations of quantum mechanics and is fully
consistent with standard decoherence. As such, bounds on collapse
models are derived through the explicit assumption that an “objective”
collapse process is needed here as described to be consistent within
the collapse model framework.

The image formation process in its essence are silver salts which
through interaction with photons create silver and bromine ions mov-
ing through a gelatine emulsion. The silver ions accumulate at the
surface of clusters of the silver salts which form the “pixels” of the
picture. One of those clusters needs around ≈ 30 silver atoms to be
developable. Also in order to get a definite track of a photon one
assumes ≈ 20 of the “pixels” to have formed. The formation time
of one “pixel”, that is ≈ 30 silver atoms to move to the surface is of
the order of 3 · 101±2s−1. We assume that since our photo should be
captured within that time window, the collapse process to an effective
classical state also has to be complete. We can estimate the collapse
rate λ with our approximation (2.237). Since we have 30 silver and
bromine atoms moving with nucleon numbers 108 and 80 respectively,
we have n ≈ 5 · 103 and N ≈ 20. This gives

λ ≈ 5 · 10−8±2s−1 (2.238)

assuming rc ≈ 10−7m, which corresponds roughly to the size of one
“pixel”. Historically, the assumptions for λ and rc were much more
conservative and chosen to be large enough to have an appreciable
effect on macroscopic masses (≈ 1g) while still remaining negligible
for microscopic systems. The value for the reduction rate was therefore
chosen to be λ ≈ 10−16s−1, since this would be enough to get a reduc-
tion rate for macroscopic systems of ≈ 1g (2.237) to be ΓCSL ≈ 107s−1,
without affecting microscopic quantum systems. The Adler calculation
constitutes a lower bound on the collapse rate since lower values for λ

would lead to longer times for the transition from quantum to classical
than what seems compatible with latent image formation.

We can also define upper bounds for the parameter based on the
heating through collapse noise. Since such a heating has not been
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measured so far, it must be negligible in relevant systems. An example
for such an upper bound can be found by calculating the heating of
protons in the universe [3]. Assuming that the heating rate is given by
(2.222), and M = 1, only taking into account the proton mass, for our
given value (2.238) the temperature increase over the lifetime of the
universe is T ≈ 7 · 103K. Now this energy should be radiated in the
form of photons and contribute to the cosmic microwave background.
The total energy increase should not exceed a fraction of the CMB,
which gives an upper bound for λ > 10−4s−1. Even following more
sophisticated methods of bounding λ from above do not seem to give
stronger bounds. Details can be found in [3].

2.6.11 Limits and issues with collapse models

Collapse models were initially introduced as a possible solution to the
problem of outcomes of measurements. Simply put, if a state is in a
superposition, how does a measurement single out a definite outcome?
This question is different from the question of a preferred basis. The
appearance of a preferred basis is explained by the mechanism of
decoherence and related to the interaction with an environment. How-
ever, decoherence leads to entanglement with the environment and
does not break the unitarity of the evolution of the composite system.
This selection of a definite outcome is at the core of the interpretations
of quantum mechanics. Collapse models integrate this selection into
the evolution of the quantum state through nonlinearities. As we have
seen above, this necessitates another change, the introduction of an
additional noise to prevent superluminal signaling. The instantaneous
state change of quantum mechanics (the spooky action at a distance)
in quantum mechanics does not allow the propagation of information
precisely because of the unitarity of the evolution. The additional noise
then comes with its own problem, namely breaking the conservation
of energy. We have seen possible extensions of the model here to com-
pensate by either introducing a colored noise our through additional
dissipation. But again this also creates other problems. Namely, a
colored noise inherently selects a reference frame since the cutoff can-
not be Lorentz invariant. This implies that there is a preferred frame
for the noise field. The same holds true for the dissipative extension,
which again is dependent on the reference frame of the system.

The concept of an objective collapse fits well into the idea of a
classical macroscopic world. However, if all fundamental forces are
described by quantum theories, the notion of objective collapse be-
comes harder to justify, since it would fundamentally forbid quantum
effects at characteristic length and mass scales, making them unneces-
sary to describe gravitational interactions of suitably massive objects.
However, at these scales relativistic effects become prevalent. Collapse
models so far cannot be consistently applied to such systems. On
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the other hand, for mesoscopic systems, it isn’t clear yet where col-
lapse model effects would become dominant. In principle, experiments
measuring genuine gravitational interactions of superposition states
might not be impossible even if collapse models would indeed turn
out to be relevant. Thus, they might not address the properties of the
gravitational field after all.

The generalization of collapse models to relativistic physics is not
straight forward as well. One issue here was pointed out in [59]. The
collapse, being a random process, localized in space cannot influ-
ence all branches of a superposition instantaneously, since space-like
separated branches would experience the collapse in different time
orderings depending on the reference frame. The correct renormaliza-
tion is dependent on the correct time ordering of the collapse events.
This contradiction could in principle be resolved by introducing col-
lapses that are strictly time-like connected to each other. But this also
faces issues since a macroscopic object in superposition could then
experience a collapse event at one position that does not lead to in-
stantaneous collapse for the whole object. Successive collapse events
would only occur time-like separated from each other, which would
preserve superpositions until collapse can occur for the whole macro-
scopic extension. This contradicts the initial goal of collapse models of
macroscopic collapse of superpositions in this relativistic setting. A
solution for compatible extensions of collapse models to a relativistic
setting has not been found to date. It might even be impossible to do
[58].

2.7 chameleon fields

So far we concentrated our efforts on quantum mechanics and possible
changes to the underlying dynamics. In this last section we also want
to venture into a different direction, namely the question of dark
energy and possible additions to the standard model.

The expansion of our universe was experimentally verified by mul-
tiple experiments [64, 66, 87, 92]. The easiest way to explain this
phenomenon is to introduce a background energy field, often called
“dark energy”. This field in its simplest form is non interacting with
any standard model particle. However, the magnitude of the field has
to be very small (at the order of 10−120M4

Pl) to explain the measured
expansion rate. More complex models to describe this phenomenon
involve scalar fields which would introduce another (fifth) force that
should be detectable in experiments. However, tabletop experiments
and measurements at the solar system level have come back empty
handed. This would limit any additional force to energy scales far
beyond the planck scale which in turn poses a problem to incorporate
into standard quantum field theory. One way to circumvent this issue
is to make this force dependent on its environment. One such candi-
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date are Chameleon theories [19, 62, 63]. The initial idea is to have a
scalar field φ with a density dependent mass of the chameleon particle.
This would “screen” the effective force at laboratory experiments as
well as solar system measurements, while still contributing meaning-
fully at larger scales. The typical starting point of such theories is a
Lagrangian of the form

L =
√
−g

(
M2

Pl R
2

+
(∂φ)2

2
+ V(φ)

)
+ Lm(ψ, g̃µν) (2.239)

with R the Ricci scalar, MPl the Planck mass and Lm a matter
Lagrangian coupling the matter field ψ to a metric g̃µν which is related
to the Einstein-frame metric gµν through

g̃µν = e2βφ/MPl gµν (2.240)

with β a coupling constant. The exponential term is quite often
denoted as A2(φ) in the literature. In the case of non-relativistic matter,
one can rewrite the matter density as g̃µνTµν ≈ −ρ̃. In the Einstein-
frame this is related to the density ρ as

ρ = ρ̃e3βφ/MPl (2.241)

which is independent of φ in the Einstein-frame. The equation of
motion then becomes

∇2φ =
∂V
∂φ

+
β

MPl
ρeβφ/MPl (2.242)

The effective potential seen by the chameleon field is

Veff = V(φ) + ρeβφ/MPl (2.243)

We haven’t specified the potential V(φ) yet. In order to explain
the expansion of the universe we assume V(φ) > 0. On the other
hand we want to suppress the force at higher densities, which leads
to V ′(φ) < 0 as well as V ′′(φ) > 0, two important properties for the
screening mechanism to work. The first derivative has to be negative
to allow a solution in which we assume a constant density over all
space. In this case the derivatives of the field vanish and we end up
with

−∂V
∂φ

=
β

MPl
ρeβφ/MPl (2.244)

where the right hand side is strictly positive (β has to be positive due
to quantum stability [94]). The second derivative is associated with
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the mass of the chameleon particle and thus positive. The typically
assumed form of V(φ) therefore is an exponential function in φ:

V(φ) = Λ4
(

1 +
Λn

φn

)
(2.245)

with the constants Λ and n, satisfying these properties. If we set
the constant Λ to ΛDE ≈ 2.4meV, then the constant term describes
the dark energy contribution to the expansion of the universe. The
parameter n can be chosen such that the derivative properties stay
untouched. Another simplifying assumption is to taylor expand the
exponential term in φ giving

∇2φ =
∂V
∂φ

+
β

MPl
ρ (2.246)

which shows the two competing terms in the laplace equation. With
this form of the potential we can calculate the bulk field φbg

φbg →
∂Veff

∂φ
= −nΛ4+n 1

φn+1 +
β

MPl
ρ = 0 (2.247)

φbg =

(
nΛ4+n MPl

βρ

) 1
n+1

(2.248)

We can also define the mass of the chameleon particle as well as its
compton wavelength λc given by

m−1(ρ) = 1/
√

V ′′e f f (φbg) = λc(ρ) =

√
1

n(n + 1)Λ4+n φn+2
bg (2.249)

The effective potential

Veff = Λ4
(

1 +
Λn

φn

)
+

β

MPl
ρφ (2.250)

can be modeled as two components.
There are two regimes of interest. The linear regime, in which the

derivative of V(φ) is small. The effective equation becomes similar
to the Poisson equation for the gravitational field. An example for
which these conditions are met would be a small, high-density source
embedded in a low density background. For larger radii of our high-
density source, the derivative term increases its absolute value and,
since it is negative, cancels out the density contribution more and more.
The source term becomes smaller. This nonlinear effect is known as
“screening”, drowning out the effective force. For sufficiently large
densities, the chameleon force is suppressed. This demonstrates all
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(a) (b)

Figure 2.1: Effective potential landscape. (a) Potential with high density and
n > 0 (linear regime). (b) Potential with low density and n > 0
(nonlinear regime).

the desired properties we initially wanted from the chameleon field,
hiding its contribution in tabletop experiments for sufficiently large
densities.

This transition from the linear- to the nonlinear regime happens
only inside high density objects. This exponential suppression is also
known as “thin shell effect” [63] since only the outer layers of a mass
with high density contribute to the chameleon force.

This effect can be approximately calculated by assuming a radial
symmetric setup, a sphere in a background density. This was demon-
strated in [21]. We will give a brief recap of this calculation, since we
will use these results later in this work.

2.7.1 Thin shell effect

To start we transform the evolution equation to spherical coordinates

1
r2 .

∂

∂r

(
r2 ∂φ

∂r

)
=

∂V
∂φ

+
β

MPl
ρ (2.251)

with ρ = ρSΘ(rs − r) + ρminΘ(r − rs). Θ denotes the Heaviside
function.

In order to derive an approximate solution it is instructive to think of
three different regimes of the above equation. First, far away from the
sphere we expect the field to approach φbg (2.248). Since we assume
that ρmin is small, we expect the potential term to dominate. We
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can expand the potential Veff(φ) around φbg and keep the harmonic
component, which after taking the derivative gives

1
r2 .

∂

∂r

(
r2 ∂φ

∂r

)
=

dV
2

eff
dφ2

∣∣∣∣∣
φ=φbg

(
φ− φbg

)
(2.252)

with dV
2
eff

dφ2

∣∣∣∣
φ=φbg

= m2
bg

For the case of the inside of the sphere we have two regimes. We
expect the field to approach φs, the minimum of the field for density
ρs. If the sphere is small, the field may remain larger than φs and we
can approximate the effective potential with Veff =

β
MPl

ρφ, giving us
solutions similar to the gravitational potential.

In the last case the field drops to φs within the sphere for rs > 0. In
this regime, which is located within a radius rc from the center of the
sphere, we can again approximate with a harmonic potential, giving

1
r2 .

∂

∂r

(
r2 ∂φ

∂r

)
=

dV
2

eff
dφ2

∣∣∣∣∣
φ=φs

(φ− φs) (2.253)

with dV
2
eff

dφ2

∣∣∣∣
φ=φs

= m2
s .

In order to give a complete (approximate) solution we join the
solutions together by matching φ and its first derivative at rc and rs.
This fixes all constants of the solutions and gives [21]

φ =


φs

φs +
1

8πrs

β
MPl

ms
r2−3r2

c r+2r3
c

rr2
s

φbg − 1
4πrs

β
MPl

ms

(
1− r3

c
r3

s

)
rS
r e−mbgr

r < rc

rc < r < rs

r > rs

(2.254)

and

rc = rs

√
1− 8π

3
MPl

βms
rsφbg (2.255)

from which we can also extract a criterion for the appearance of the
“thin shell” governed by rc. The last factor in (2.255) has to be smaller
than one for a real solution giving the inequality

φbg ≤
3βms

8πrs MPl
(2.256)

We can also rewrite the solution for the field outside the sphere
depending on the the appearance of rc since in the case r > rs it
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adds an additional factor. In [21] this factor
(

1− r3
c

r3
s

)
≡ λs is used

to determine the thin shell contribution to the potential outside the
sphere. Knowing the field outside the sphere we can calculate the
chameleon acceleration with

~a = − β

MPl
~∇φ =

(
1− r3

c
r3

s

)
βms

4πr2MPl
(2.257)

where we used mminr � 1. Comparing this with the gravitational
acceleration gives

aφ

aN
=

(
1− r3

c
r3

s

)
βms

4πr2MPl

r2

Gms
= 2

(
1− r3

c
r3

s

)
β2 (2.258)

containing the factor β. From now on the coupling parameter β will
be written as MPl

M to better reflect its relation to the Planck mass.
As was shown in [21] as well, an approximate solution for the force

between two spheres can be calculated, resulting in

Fr =
Gm1m2

r2

[
1 +

(
1−

r3
c,1

r3
1

)(
1−

r3
c,2

r3
2

)(
MPl

M

)2
]

(2.259)

with two spheres with radii r1, r2, mass m1, m2 and distance r. This
result can be used to calculate an approximate expectation of the
chameleon force depending on the size and density of massive spheres.
As we will see in chapter 4 this force might be sufficiently strong to
be measured experimentally by the method used in [102].





3
E X P E R I M E N TA L A P P R O A C H E S

In this chapter we will look into experiments trying to test the different
theoretical ideas we have discussed in the last chapter. We will start
with the pursuit of experiments testing general relativistic proper time
changes in quantum systems using photons. We will then look into
proposals to test the Schrödinger Newton equation in harmonic os-
cillator systems. Lastly, we will analyze experiments aimed at testing
collapse model effects in various ways. From interferometry, addi-
tional x-ray radiation of free electrons in bulk materials, to heating of
cantilever systems associated with the collapse noise.

3.1 testing gravitational time dilation in quantum sys-
tems

Testing a loss of visibility due to time dilation in an interferometry
experiment with clock degrees of freedom can be done in two ways.
One option is to consider massive particles traveling through the
interferometer which carry a “clock” degree of freedom, for example
spin. Some preliminary calculations based on the visibility (2.49) can
be done for several masses that could be considered as experimental
test bed. Taking atoms as test mass where the clock degree of freedom
is realized through oscillating hyperfine states, we can calculate the
visibility through the expected oscillation frequency ω = ∆E

h̄ and
compare it to the time of flight as well as the height difference of the
two paths. For frequencies of ω ≈ 1015Hz and assumed flight times of
∆T ≈ 1s one would need a height difference of ∆h ≈ 10m in order to
get a measurable reduction in visibility. So far, experiments achieving
such flight times let alone interferometer sizes on the order of meters
is not feasible. To give a few comparisons, the COW experiment [77]
had a height difference of ∆h ≈ 2cm with a flight time of ∆T ≈ 10−4s.
For molecular interferometers [40] ∆h ≈ 10cm with flight times of
∆T ≈ 10−3s.

Another way of testing this proposal could be done by not using
massive particles, but photons. We can describe a similar phenomenon
of reduction of visibility by comparing single photon flight times in
an interferometer [106]. We start with an approximately flat metric of
the form

ds2 =

(
1− 2GM

rc2

)
dt2 − 1

c2 r2dθ2 (3.1)

69
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with an infinitesimal angle dθ which is constant for a far away
observer. Since we are interested in a light like trajectory, we can easily
extract the time coordinate along a horizontal trajectory

tr =
t

c
√

1− 2GM
rc2

(3.2)

which is dependent on the distance from the gravitational source.
This ensures that the photons flight time can be seen as a clock for its
own reference frame. If one considers an observer at the upper path,
this time difference between the two trajectories can be approximated
as

∆τ ≈ lgh
c3 (3.3)

with l the horizontal path length, h the vertical distance of the paths
and g the gravitational acceleration. If we now consider a superposi-
tion state of a single photon traveling along the interferometer arms
we get

|1〉u,d =
∫

dν f (ν)
(

ei ν
c (x−ctr) ± ei ν

c (x−c(tr+∆τ))
)

a†
ν |0〉 (3.4)

with the photon frequency ν and the corresponding mode shape
f (ν). The associated detection probability on a detector is

P =
1
2

(
1±

∫
dν| f (ν|2 cos(ν∆τ)

)
. (3.5)

This probability has two limiting cases, recovering two physical
effects. In the case that the frequency shift due to time dilation accu-
mulated is small compared to the inverse of the frequency τ . 1/ f
of the photon mode, we recover the classical phase shift associated
with Newtonian gravity. However in the case of a large time dilation
τ & 1/ f , the fast oscillating cosine term averages to zero over the
mode width. This means that there is no meaningful overlap of the
two mode shapes when recombining and hence loss of visibility. To
reach such a regime we need an effective area of the interferometer
A ≈ t c3

g . At first glance, this is rather large, since minimum times
corresponding to light pulses in the femto second regime still would
require an area of A ≈ 109m. However, a smaller width of the photon
wavepacket can be achieved in principle [71]. Also, fiber optics allow
travel distances of polarization encoded qubits of x ≈ 100km without
losing their coherence. [56]

Another approach to test a change in the visibility due to time
dilation was suggested by [22] using single electrons in penning traps.



3.1 testing gravitational time dilation in quantum systems 71

These systems can be described through their orbital degree of free-
dom as well as their spin degrees of freedom. The general Hamiltonian
neglecting contributions from the Dirac equation reads

H =
p2

2m

(
1− p2

4m2c2

)
+ µ · B

(
1− p2

2mc2

)
(3.6)

The corresponding spectrum of the trapped electron is given by
h̄ωc (n + 1/2) as well as h̄ωcms with quantum numbers n = 0, 1, . . .
and ms = ±1/2. We can see that because of relativistic corrections the
frequency associated with the spin degree of freedom is modified

ωc + δc = ωc

(
1− h̄ωc

mc2

(
n +

1
2

))
(3.7)

or in other words depending on the orbit of the electron its internal
spin clock runs at a different rate. We can therefore use superpositions
of orbital quantum states to probe the relativistic time dilation. Note
that this time dilation is an effect of special relativity, no gravitational
effects enter here. The Dirac equation used here does not contain any
gravitational interactions.

At a magnetic field of 5T, we get a frequency shift of δc = 2π · 150Hz.
Taking into account the average trapping time in a penning trap
defined by the inverse of the free radiation

γ0 ≈
1

4πε0

4e2ω2
c

3mc3 ≈ 2π · 2Hz (3.8)

we can see that such an experiment seems feasible, especially
considering the typical coherence time of spin degrees of freedom
Tspin ≥ 1year and coherence time for orbital superpositions to be of
the order of Torb = 1/|γ0l|.

These types of setups also allow to analyse possible entanglement of
either two photons, using the reduction of visibility, or two electrons,
using their cyclotron states. probing the effect of time dilation in a
Bell test ruling out any local realistic description of the generated
correlations. In the case of photons we can achieve this by having a
Franson-type interferometer. This type of interferometer uses two cor-
relate photon wave packets which are sent into two arms respectively.
The arms of the interferometer are themselves Mach-Zehnder interfer-
ometers. One side is embedded in a curved space-time (a gravitational
field) leading to two different arm length due to time dilation. This
setup allows for Bell tests of the entangled state of the two photon
wavepackets. If a Bell inequality can be violated, these photon states
in curved space-time cannot be described by a local-realistic theory.

Similarly, this can be done for the above described electron setup.
Starting off with superposition states in the spin degree of freedom,
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acting as clock states |ψ〉1,2 = 1/
√

2 (| ↑〉1,2 + | ↓〉1,2) for two electrons.
The different cyclotron states are realized with two atoms in penning
traps connected with a waveguide. The resulting state reads

|Ψ〉 = 1/
√

2 (|ψ, 0〉1 ⊗ |ψ, 1〉2 + |ψ, 1〉1 ⊗ |ψ, 0〉2)

with the states |0〉, |1〉 the different cyclotron paths. If a violation
of a Bell inequality can be detected with such a setup, the elapsed
time for a local state itself would not be local. One interesting detail
here is, that one could in principle do a similar experiment with one
electron and one positron looking into time reversal symmetries of the
involved particles.
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3.2 testing the schrödinger newton equation

The Schrödinger Newton equation predicts a changed time evolution
of the wave function due to self interaction. We can define a potential
for a composite system by

∇2U = 4π ∑
k

∫
d3nx|ψ|2mkδ(x− xk) . (3.9)

We are now interested in a description of the center of mass for
a harmonic oscillator system. If we assume to be in the regime of
massive composite particles such that we can attribute the center of
mass motion to be

xcm =

√
h̄

2mωcm
(3.10)

and internal motions with zero point fluctuation of individual lattice
atoms xzp f and thermal contributions xth. If we consider low equi-
librium temperatures with environments Tenv ≤ 100mK, to be in the
regime

xzp f � xth � xcm (3.11)

we can taylor expand the contribution of the Schrödinger Newton
potential [103] in the multiparticle Schrödinger Newton equation

ih̄∂tψ = ∑
k

(
−

h̄2∇2
k

2mk
+

mkU
2

)
ψ + V(x)ψ (3.12)

with the potential term given by

∑
k

mkU
2

= −∑
k,j

Gm2

2

y
δ(y− y′j)|ψint(y′)|2d3n−3y′

1
|x− z + yk − y|d

3yψ2
cm(z)d

3z (3.13)

where the integral

− Gm
2

∫
δ(y− y′ j)|ψint(y′)|2d3n−3y′

1
|x− z + yk − y|d

3y =

= −Gm
2

∫
ρint(yk)

|x− z + yk − y|d
3y = Vgrav(z) (3.14)
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describes the gravitational potential of a lattice in a center of mass
frame. Expanding this integral around x and z gives

∑
k

mkU
2

= ∑
k

Vgrav(yk) + (xcm − 〈xcm〉)∑
k

∂zVgrav(yk)

+
1
2
(xcm + 2xcm 〈xcm〉 −

〈
x2

cm
〉
)∑

k
∂2

zVgrav(yk) (3.15)

The first term only depends on internal degrees of freedom that
do not contribute to the center of mass motion. The second term
describes interactions of the center of mass with internal degrees of
freedom. Since the time scales of fluctuations of motion for these
degrees of freedom are on vastly different time scales we can neglect
these contributions. The only relevant term then is the second order
term

C = −G
2

∂2
z

(∫
ρint(y)ρint(y′)
|z + y− y′| d3yd3y′

)
z=0

(3.16)

and the simplified Schrödinger Newton equation for a center of
mass harmonic oscillator becomes [38, 50, 103]

ih̄∂tψ =

(
− h̄2∇2

2m
+

mω2
cmx2

2
+

1
2
C (x− 〈x〉)2

)
ψ (3.17)

We can associate the parameter C with a characteristic frequency
ωSN =

√
C /m effectively modifying the resonances of the simplified

Schrödinger newton equation. Depending on the choice of the mass
distribution we can consider different frequencies. For example, if we
consider a homogeneous mass distribution, the SN factor becomes
C = Gmρ giving an associated frequency of ωSN,hom =

√
Gρ. However,

if we take the mass to be confined around the nucleus of atoms in
their lattice positions with fluctuations xzp f , we arrive at the different
expression

ω
con f ined
SN =

√
Gm0

12
√

πx3
zp f

(3.18)

with a mass m0 per lattice point. This is larger by a factor of ∼ 100.
Typical frequencies are in the range of ω

con f ined
SN ≈ 10−2Hz for materials

like silicon.
The modification of the Schrödinger equation can then also be

expressed through effective Heisenberg equations

ẋ =
p
m

, ṗ = −mω2
cmx−mω2

SN(x− 〈x〉) (3.19)
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from which it becomes evident that first moments are unchanged,
while second moments evolve with a modified frequency
ω =

√
ωcm + ωSN . This leads to a different evolution for a squeezed

state, where the rotation with frequency ωcm in phase space now is
accompanied by a rotation with different frequency

√
ωcm + ωSN of

the ellipse representing its uncertainty. However, since the ratio of ωcm

to ωSN is typically rather small, resolving such an effect is challenging.
One proposal to test changes in the resonance frequency is given
in [51]. The idea here is to concentrate on the shift in energy levels
caused by the shift in resonance frequency due to the self interaction.
In the above case, because of the assumption that the wave function
is narrower than the extent of the particles location, we only get a
constant shift for all levels. This approximation breaks down for wave
functions of the order of the localization of the nucleons making up
the macroscopic object. The energy splitting can be calculated to be

∆E =
Gh̄m

4σ3ω0
fn(α)

with σ the localization of a nucleus and fn(α) a frequency depen-
dent function, which is rather complex and can be found in [51]. In
the case of narrow wavefunctions however fn(α) does not contain a
dependency on n. The parameter α appearing in fn is the ratio of the
width of the ground state of the total mass and the localization of the
nucleus and is dimensionless

α = 2σ
√

Mω0/h̄ (3.20)

For values of α ≈ 1 a dependence on n appears in fn giving a
frequency shift

∆ωnm =
1
4

Gm
ω0σ3 ( fn(α)− fm(α)) (3.21)

In order to give an estimate of the expected effect in an experiment
we can determine the mass M from (3.20) by demanding α ≈ 5 to
achieve a non-degenerate energy shift. The parameter σ is taken to be
the Debye-Waller factor at a temperature of T ≈ 100mK giving σ ≈
2.77 · 10−12m. The resulting mass is M ≈ 1015u which corresponds to
an osmium sphere of radius r ≈ 2.6µm. For a harmonic trap frequency
of ω0 ≈ 100Hz, we get a splitting ∆ f ≈ 0.1mHz. A concrete proposal
was investigated in [51] using an osmium superconducting disk inside
a linear Paul ion trap in a dilution refrigerator. The effect would be
probed in the longitudinal direction of the setup. It is important to
note that this effect is not dependent on having the massive system
in the ground state. The effect of frequency shift is also present in
thermal states, reducing experimental demands.
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3.3 testing penrose model

The here investigated experiment, performed at the University of Cali-
fornia, Santa Barbara [76], achieved to cool a mechanical mode to its
ground state with conventional cryogenic refrigeration. The ground
state is reached for temperatures below 0.1K. The readout is done
via a superconducting qubit (a Josephson junction in parallel with
a capacitor and an inductor) which is coupled to the oscillator. The
oscillator itself is built out of a thin film of aluminium nitrite, sand-
wiched by aluminium metal electrodes. The thickness of the resonator
is 3.3 · 10−7m with an area of 5.58 · 10−10m2. By applying voltage, the
resonator expands or contracts with a resonance frequency of 6 GHz.
In this experiment it was possible to swap excitations between the
superconducting qubit and the mechanical resonator, which allowed
to perform a Ramsey type experiment. Thus the mechanical oscillator
could be prepared in a superposition state |g〉+ |e〉 of the ground state
and the first excited state. The measured dephasing time of this state
was t = 20ns. Due to the macroscopic nature of this superposition
state, it seems justifiable to ask, whether deviations from the typical
quantum mechanical behavior can be seen. This would emerge in a
possible reduction of the coherence time of this state.

In order to give quantitative results for the coherence time, we have
to calculate the self energy of the considered oscillator. Since the actual
shape of the mass distribution is not specified in the theory of Penrose
and Diosi, we consider spheres to construct the lattice. If each of the
mass spheres has a mass of m1 and a radius of r, the systems total
mass is m and the superposition states have a spatial separation of ∆x,
we can approximate the above self energy by the expression:

∆E = −Gmm1

(
6
5r
− 1

∆x

)
(3.22)

with ∆x ≥ 2r and

∆E =
Gmm1

r3 ∆x2 (3.23)

with ∆x < 2r.
One way to estimate the displacement of the unit cell is to consider

the influence of the qubit after coupling. An additional energy of one
phonon is added. This additional energy is the electrostatic energy
Echarge = Q2

2C . This energy leads to a displacement according to the
piezoelectric effect: ∆x = d33

Q
C .

This displacement is only between two layers of atoms. Due to
the structure of the material and the fact that the vibrational modes
can be understood as elongation only in one direction, the successive
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distance between arbitrary layers from the center of the material is
just ∆x multiplied with the number of layers in between.

The number of atoms of each layer for the dimensions of the Alu-
minium Nitrite crystal is Np = 6.66 · 109. And the number of layers
is Nl = 663. This allows us to calculate the total self energy for Alu-
minium and Nitrogen.

∆EAl|N = 4NpGm2
Al|N

(
6Nl

5r
−

Nl

∑
k=1

(
1

k∆x

))
(3.24)

This leaves us with a function ∆E(r) which is the sum of the two
different types of matter (∆E = ∆EAl + ∆EN). We implicitly assumed
here, that the condition ∆x ≥ 2r holds. If this would not be so, one
has to consider 3.23.

From [76] we can now take the coherence time of their Ramsey fringe
experiment in order to have the lifetime of a superposition of ground
state and excited state of the mechanical oscillator (t ≈ 20ns). We
can thus find an upper bound for the radius of our mass distribution
r ≤ 1.09 · 10−22m. This is smaller than the radius of a nucleus by
several orders of magnitude. If the radius would be of the order of
a nucleus, the expected coherence time due to gravitational effects
would be t ≈ 0.19s, a time frame in which standard decoherence
effects clearly dominate.

3.4 testing collapse models

3.4.1 Testing collapse with interferometers

Collapse models predict a fast decoherence for superposition states,
as long as the superposed mass is large enough. We will start our
analysis of possible experiments with matter interferometers [34]. We
are interested in decoherence effects originating from collapse models
that deviate from the predictions of standard quantum mechanics and
environmental decoherence. In order to incorporate the influence of
collapse into the calculation for the evolution of the wave function
we will turn to the formal solution for the collapse dynamic [73, 93]
(2.208). The free evolution of the density matrix then reads

ρ(x, x′, t) =
1

(2πh̄)3

∫
dk
∫

dωe−
i
h̄ k·ωF(k, x− x′, t)ρQM(x−ω, x′ −ω, t)

(3.25)

To describe the time evolution in an interferometer, we divide the
time evolution in sections corresponding of the different stages of
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the setup. Starting with an initial wave function and corresponding
density matrix ρ(y0, y′0, 0) = δ(x1 − y1)δ(x1 − y′1). We evaluate the
free evolution of the density matrix until the first grating which gives
solutions of the form

ρ(x1, x′1) = e
ik

2L1
(x2

1−x′21 )e−
ik

2L1
(x2

1−x′21 )x0 F(
h̄k
L1

(x2− x′2), 0, 0; x2− x′2, 0, 0; t1)

(3.26)

Which is just the free evolution multiplied with the additional
function F and a distance to the first grating L1. We then apply a
transmission function for the grating t(x1). We can now add as many
grating as we choose by repeating the above steps. The final step is
to characterize the probability to detect the interference pattern at a
position on the screen. For a single grating it takes the form

p(x) =
∫ ∞

−∞
dx1

∫ ∞

−∞
dx′1D(x1 − x′1)t(x1)t∗(x′1)

e−i mv
h̄ (x1−x′1)(x1/L1+x/L2)ei mv

2h̄ (1/L2+1/L1)(x2
1−x′21 ) (3.27)

where the function D is given by the modification F of the free
evolution

D(x1 − x′1) =

F(
h̄k
L2

(x1− x′1), 0, 0; 0, 0, 0; t2)F(
h̄k
L1

(x1− x′1), 0, 0; x1− x′1, 0, 0; t1)

(3.28)

Care has to be taken to make sure that this simplified calculation
holds up in real experiments. First, the size of the molecule used in the
interferometer is small compared to the length of the interferometer
L1,2 to treat the interaction with the grating as instantaneous, enabling
the use of a transmission function. Also in order to ignore influences
in other directions, we require that the grating slits are much larger
in height compared to the molecule wavefunction extension in the
perpendicular direction to the plane we focus on. Another important
point is the actual source wave function, which was taken here as
point like. However, the initial wave function can also prepared in
different initial configurations.

The transmission functions can be written as fourier transformations
if we assume that gratings are periodic and treated as effectively
infinite in the x-direction.

|t|2 =
∞

∑
l=−∞

Ale2iπl x1
d (3.29)
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with a periodicity d. For further details on the calculation we refer
the reader to [93]. For a near field interferometer like in [74] we
can then describe the interference pattern through an expression
depending on the transmission functions and the correction terms
coming from collapse models

S(xshi f t) = ∑
n

A∗nC∗nBnD(
2πn

d
l
k
)e−2iπn

xshi f t
d (3.30)

were the transmission coefficients A, B, C now describe three differ-
ent gratings with the last grating movable in x-direction. The parame-
ter xshi f t describes the relative position of the third grating. The key
factor to measure the change in interference now is again the function
D introducing the collapse effect. Using (2.208) we can write the factor
D as

D
(

2πn
d

l
k

)
= exp

[
−λ

m2

m2
0
(t1 + t2)

(
1−
√

π

2

erf( πnl
dkrc

)
πnl
dkrc

)]
(3.31)

from which we can calculate the ratio of visibilities with and without
the collapse effect.

VCSL

V
= exp

[
−2λ

m0d
2

N
m3

m3
0

(
1−
√

πrc

Nd
erf
(

Nd
2rc

))]
(3.32)

This closed expression can be used to analyze the collapse effect
in experiments like [74] where a sufficient reduction is assumed to
diminish the visibility by a factor of VCSL

V = 1
2 . In this case, the gratings

are implemented through standing waves of a laser with wavelength
λL = 157nm. the grating period then is d = λL/2. We want to make
sure that the effective separation in our interference pattern is larger
than the assumed collapse length, so we choose the second Talbot
order N = 2 doubling the separation. This enables us to test for rc ≈
10−7m. For these values and a cluster mass of m = 1.6 · 10−21kg, which
corresponds to ∼ 106atoms, we can set a bound for λ & 5 · 10−6s−1.

3.4.2 Testing collapse with x-ray emissions from free electrons

Another way of testing the parameter range of collapse models is
given by the idea that collapse should also influence the free radiation
of particles. Their effective Hamiltonian has to be modified according
to the stochastic potential. We will show a quick motivation of this
phenomenon using the formula for dipole radiation of a free charge.
[3]

P =
1

6πε0c3 e2a2 (3.33)
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Figure 3.1: The evaluated parameter region for a molecule interferometer
with ∼ 106amu. The bound for collapse models at rc ≈ 10−7m
is λ & 5 · 10−6s−1 giving a weaker bound than the Adler bound
(straight line).

with a being the acceleration of the free charge. In order to apply
our effective collapse model calculation, we associate the acceleration
a with the average over the stochastic process of a, which means we
need to calculate 〈〈ẍ〉〉. The motivation behind this is, that the free
electron will undergo localization processes of its wavefunction along
its trajectory changing its momentum at random. These localizations
follow the stochastic process defined in (2.217) plus the kinetic energy
term. The related equations of motion read

ẋ =
p
m

(3.34)

ẍ =
h̄

m0

∫
d3x

dBt

dt
∂x M(x) (3.35)

The stochastic average of (3.35) then gives an additional factor γ

and

〈〈ẍ〉〉 = h̄γ

m0dt

∫
d3x (∂x M(x))2 =

3h̄2λ

2m2
0r2

c dt

Or equivalently, using 1
dt = δ(0) = 1

π

∫ ∞
0 dk and the dipole radiation

formula, we get

P =
e2

4π2ε0c3
h̄2λ

m2
0r2

c

∫ ∞

0
dk (3.36)
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Since the CSL model used here is non-relativistic, the result only
applies for non-relativistic regimes, namely for k� m. Equivalently,
this can be written in terms of the energy gain

dΓ(E)
dE

=
e2

4π2ε0c3
h̄2λ

m2
0r2

c

1
E

(3.37)

This energy gain can be measured by detecting the emission rate of
photons over time, where we consider valence electrons contributing
to the radiation profile. The above formula should be applicable as
long as there is no relativistic effects at play. Such an experiment
was carried out [29] using a germanium block of about m ≈ 80kg.
Measuring the radiation in an energy range of ∆E = 4.5− 48.5keV
and fitting the measured curve with a function

dΓ(E)
dE

=
α

E
(3.38)

gives a value of α = 115± 17 and a χ2 = 0.9. This puts an upper
limit on the emission of α = 143 with a confidence level of ∼ 95%.
Evaluating the expression for the emission gives

λ & 1.8 · 10−11s−1 (3.39)

for a value of rc = 10−7m.
The resulting bounds would rule out the parameter regime of Adler.

However, we already discussed the energy non-conservation of col-
lapse models. If one wants to uphold energy conservation, a frequency
cutoff has to be established. Depending on where this cutoff is chosen,
the effect of collapse models on free electrons are strongly diminished.
The bound calculated here is only limiting the parameter space if no
frequency cutoff is considered. In order to rule out such extensions
we have to go to experiments utilizing lower frequencies.
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Figure 3.2: The excluded parameter regime for the radiation rate of free
electrons in germanium. The bound for collapse models at
rc ≈ 10−7m is λ & 7 · 10−11s−1. The bound from interferome-
ter experiments in dark grey as comparison.

3.5 massive cantilever experiments

Collapse models have another property, as already discussed in the
theory section, that the induced collapse due to the stochasticity of
the model leads to a heating effect in the observed system. We will
look at a few of the proposed systems to test this heating and have a
closer look at the feasibility and applicability. First, let us consider a
massive cantilever as our test system. In order to describe the heating,
we will use our established idea that we only need to consider the
master equation to calculate the temperature increase (2.205).

d
dt

ρ = − i
h̄
[ρ, H]− γ

∫
d3x [M(x), [M(x), ρ]] (3.40)

We will furthermore define the mass operator M(x) to be

M(x) = ∑
mi

m0
g(|x− xi|, rc) (3.41)

where the function g(y, rc) is taken to be a gaussian distribution

g(y, rc) =
1√

2πr2
c

e
− y2

2r2
c (3.42)

with rc as its variance. The coordinates xi are the relative coordinates
of lattice points in our object with x being the center of mass coordinate.
In order to simplify calculations of relative coordinates in massive
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objects we will introduce the fourier transform of the mass operator,
which is

M(x) =
r3

c

(2π)3/2

∫
d3k e−

r2
c k2
2 eik·x ∑i

mi
m0

eik·xi
(3.43)

and contains the fourier transform of the mass density

ρ̃(k) = ∑
i

mieik·xi =
∫

d3x ρ(x)eik·x (3.44)

for the mass being distributed with delta peaks around the position
of the lattice points.

ρ(x) = ∑ miδ(x− xi) (3.45)

We can now introduce the Lindblad term of the above master equa-
tion as

LCSL[ρ(t)] =
λr3

c

π3/2m2
0

∫
d3k e−r2

c k2 |ρ̃(k)|2
[
eik·x,

[
e−ik·x, ρ(t)

]]
(3.46)

for the center of mass motion of the massive object. We can further-
more expand the exponential terms e±ik·x in first order as long as the
oscillations of the center of mass are much smaller in amplitude than
rc. We therefore arrive at an effective master equation term of the form

LCSL[ρ(t)] = −
DCSL

h̄2 [x, [x, ρ(t)]] (3.47)

The diffusion rate in this equation is then given by

DCSL = λ
h̄2

r2
c

α (3.48)

with α being a geometry factor dependent on the mass density
distribution. If we restrict the motion of oscillation in one direction,
e.g. the x-direction, it takes the form

α =
r5

c

π3/2m2
0

∫
d3k e−r2

c k2
k2

x|ρ̃(k)|2 (3.49)

We already know from (2.224) that we can exploit an ambiguity
of the definition of collapse models to arrive at the same effective
equation for the density matrix. This ambiguity, which turns the
underlying state vector equation into a linear equation, allows us to
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calculate the energy increase through an effective hamiltonian. We can
reformulate the problem of a cantilever under the influence of collapse
models using an effective hamiltonian with an additional noise source.
The additional term takes the form

HCSL = −h̄
dBt

dt

√
λα

r2
c

x̂ (3.50)

with dBt
dt our usual white noise, compare to (2.217). In order to have

the full hamiltonian of an oscillator with an environment in the form
of a phononic bath we get

H =
p̂2

2m
+

mω0x̂2

2
− h̄

dBt

dt

√
λα

r2
c

x̂− γmp̂ + χ̂(t) (3.51)

where the correlation of χ̂(t) is given by

〈〈
χ(t)χ(t′)

〉〉
ω
= 2mγmkBTδ(t− t′) (3.52)

in the high temperature limit kBT � h̄ω (compare (2.40)).
We can now write the equations of motion for the position and

momentum operators

∂tx̂ =
p̂
m

(3.53)

∂tp̂ = −mω2
0 x̂ + h̄

dBt

dt

√
λα

r2
c
− γmp̂ + χ̂(t) (3.54)

In the semiclassical approximation, on can focus only on the fluctua-
tion from a steady state solution. The equations of motion correspond-
ing to the fluctuations δx, δp can then be written as fourier transforms
which gives explicit expressions for δx̃(ω) and δp̃(ω).

δp̃(ω) = −iω

(
h̄ dBt

dt

√
λα
r2

c
+ χ̂(t)

)
ω2 −ω2

0 + iωγ
(3.55)

δx̃(ω) =
1
m

(
h̄ dBt

dt

√
λα
r2

c
+ χ̂(t)

)
ω2 −ω2

0 + iωγ
(3.56)

With these explicit expressions the noise power spectrum can be
easily calculated from the relation

〈δx̃(ω)δx̃(Ω)〉 = Sx(ω)δ(ω + Ω) (3.57)
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and its explicit form

Sx(ω) =
1

2π

∫
dΩe−i(ω+Ω)t 〈δx̃(ω)δx̃(Ω)〉 (3.58)

Using the correlations for the thermal noise and CSL noise terms
(3.52)(2.151) we arrive at the noise power spectrum for the position
[97]

Sx(ω) =
h̄

2mω0

2mγmkBT(h̄ω0)−1 + λα
r2

c
h̄(mω0)−1

(ω−ω0)2 + γ2
m/4

(3.59)

The relation of the spectral density of momentum is given by
Sp(ω) = m2ω2Sx(ω). We can calculate the energy increase due to
collapse models to be

〈〈H〉〉 = kBT +
h̄λα

2r2
c mγm

(3.60)

which equivalently can be written as a temperature increase com-
pared to the expected temperature due to thermal noise

∆TC =
h̄Qλα

2kBr2
c mω0

(3.61)

where we introduced the quality factor Q = ω0
γm

. We can see from
this result that using harmonic oscillator systems can in principle be
used to test the stochastic aspect of collapse models if it is possible to
determine the equilibrium temperature of the oscillator and compare
it with its environment temperature. From (3.61) we can see that
the damping γm should be kept as small as possible in order to
enhance the effect of the collapse model. The mass dependence is
not immediately obvious in this relation and depends on the factor α

which in turn depends on the geometry of the system. To get a better
understanding of α let us consider some simple geometry, a cube, as
was done in [72]. For calculating α we need to define ρ̃(k) which is
the fourier transform of ρ(x). For a cube of volume V = a3 the density
distribution is comprised of step functions in the x,y and z direction
which fourier transforms to functions of the form sinc(x) = sin(x)/x.
This gives the fourier transformed density distribution

ρ̃(k) =
m
V

Π3
i=1sinc

(
aki

2

)
(3.62)

which we directly put into (3.49) to obtain

α(a) =
(

ρ

m0

)2

32r6
c

(
e
− a2

4r2
c − 1 +

√
πa

2rc
Erf
(

a
2rc

))2 (
1− e

− a2

4r2
c

)
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Figure 3.3: Different geometries of test masses with the same density (ρ =
7430kgm−3) and mass (m = 7.43 · 10−18kg). Cube (blue), disc with
same diameter to height ratio 1:1 (yellow) and sphere (green).

(3.63)

or in the limit a� rc

α(a) ≈ 8πρ2r4
c

m2
0

a2 (3.64)

This scales with a2 and therefore α ∝ m2/3 for a fixed density. In
comparison, in the limit of a� rc the geometry factor α scales as

α(a) ≈ m2

2m2
0

(3.65)

Interestingly, this implies that it is not optimal to just increase the mass
of the system, since the overall increase of temperature due to CSL
heating scales with ∆TC ∝ m−1/3 in this limit. Indeed, it is optimal
to design the test mass on the same scale as the parameter rc to test.
As can be seen in [72] even for different geometries, like spheres,
cylinders or thin membranes, the overall temperature increase is at
best constant with increased mass.

3.6 experiments testing heating due to collapse models

3.6.1 Bulk heating of cantilevers

Proposals for testing the heating in oscillator systems have been put
forward by multiple groups [11, 72]. One of the first papers [96, 97]
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Figure 3.4: Cantilever with attached microsphere. The cantilever has dimen-
sions (lx, ly, lz) = (100µm, 5µm, 0.1µm) and the sphere has diame-
ter d = 4.5µm. The sphere is made of a neodymium-iron-boron
alloy with density ρ = 7430kg/m3. The cantilever is made of
silicon with density ρ = 2330kg/m3.

proposes a simple cantilever system, made of a bending cantilever
with a microsphere attached to the end.

The microsphere is made of a neodymium-iron-boron alloy with
density ρ = 7430kg/m3 and diameter d = 4.5µm. The cantilever is
made of silicon with a density of ρ = 2330kg/m3 and dimensions of
(lx, ly, lz) = (100µm, 5µm, 0.1µm) fig:3.4. In the case of a sphere the
geometry factor becomes

α(d) =
(

m
m0

)2 (
e
− d2

4r2
c − 1 +

d2

8r2
c

(
e
− d2

4r2
c + 1

))
384r6

c
d2 (3.66)

which again in the limit a� rc becomes

α ≈ 4π2ρ2r4
c

3m2
0

d2 (3.67)

Since the cantilever density is much smaller than the microsphere
density, one can neglect the effect of the cantilever for values of rc >

10−7m [97]. The resonance frequency of the oscillator is ω0/2π =

3084Hz with a quality factor of Q = 3.8 · 104. To detect the effect of
heating in this scheme, the center of mass motion of the neodymium
microsphere is detected via a SQUID sensor and a superconducting
pickup loop. The cantilever is in thermal contact with the surrounding
chamber. The chamber is a dilution refrigerator whose temperature
range for the experiment is between TE = 10mK and TE = 1K. The
temperature is measured with a resistive thermometer. The power
spectrum of the SQUID signal is then used to determine the average
energy of the center of mass mode of the microsphere. In order to
determine an effect of the collapse onto the heating of the sphere, the
relation of the environment temperature to the extracted temperature
from the center of mass mode is investigated. According to (3.60) the
influence of the CSL model is temperature independent. That implies
that in a plot of the two temperature values we should not expect a
change in slope but rather a shift of the intersection with the zero
value.
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The reported value for the CSL heating then is

∆TC ≤ 2.4mK (3.68)

which corresponds to λ ≈ 2 · 10−8s−1 for rc = 10−7m.
From (3.61) we can see that in order to improve the result, the main

steps of such cantilever experiments is to improve the quality factor,
while on the other hand keeping the resonance frequency low. We
already discussed that increasing the mass of the particle does not
increase the effect, if the particle is larger than rc. This can also be seen
in the above graph for the microsphere, where the maximum for λ is
reached at rc ≈ d.

An updated version of the experiment was proposed in [98] with
much higher quality factors. Due to this, they observe a magnetic
spring effect coming from their SQUID. This dynamically modifies
the quality factor and leads to a modified spectral density of the
displacement

Sq(ω) =

(
h̄2λα

m2r2
c
+

4γkBT
m

)
1(

ω2 −ω2
0

)2
+

ω2ω2
0

Q2
a

(3.69)

which again shows a temperature independent force contribu-
tion arising from the CSL model. The setup is very similar to the
above experiment with a cantilever with dimensions (lx, ly, lz) =

(450µm, 57µm, 2.5µm) and a microsphere with diameter d = 31µm
and a density of ρ = 7430kg/m3. The resonance frequency is ω0/2π =

5.136 · 104Hz. The quality factor has to be inferred from the mechanical
quality factor Qa and is Q = 6 · 105 at 1K and scales with 1/T below a
temperature of T ≈ 500mK with a maximum of Q ≈ 107 for a temper-
ature of T ≈ 20mK. In order to take into account the varying quality
factor, the relevant data from the spectral density plots is extracted by
plotting T/Q as the x-axis. Again, as can be seen from (3.69) the CSL
part neither scales with temperature nor quality factor, such that the
offset from zero is indicative for an effect.

Contrary to the first experiment [97], there seems to be an offset
present in the data, that can not be contributed to thermomechani-
cal noise. This type of noise would manifest as a saturation of the
temperature for the oscillator readout.

So far, these experiments are the only ones for meaningful bounds at
low frequencies. But even with high Q factors, the above experiments
cannot rule out the parameter regime given by Adler (2.238) and the
possible effect seen in the improved experiment was not reproduced
in other setups.
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Figure 3.5: The two cubic masses of LISA Pathfinder with distance R =
3.76 · 10−1m and side length L = 4.6 · 10−2m.

3.6.2 Bounds from noise in massive systems

Another scenario to find possible improvements of the collapse param-
eters in regimes where rc > 10−7m can be found in large low noise
systems at millikelvin temperatures. Two experiments come to mind,
LISA [8] and LIGO [1].

Let us start with bounds from LISA [25, 54]. The configuration of
the experiment involves two cubic masses at a distance R fig:3.5.

The cubes have a side length of L = 4.6 · 10−2m and are a distance
R = 3.76 · 10−1m apart. They are made of a gold and platin alloy with
a mass of m = 1.928kg. In order to describe the decoherence, we write
the Lindblad term of the system as (3.47)

L [ρ] = −1
2 ∑

α,β
∑
i,j

η
α,β
ij [xα,i, [xβ,j, ρ]] (3.70)

where the x coordinates describe the center of mass of the cube
and the index α, β goes from 1 to 2 for the two mass distributions
respectively. The relevant collapse term incorporates the two mass
distributions in analogy to (3.49) with the difference that we have two
mass distributions centered a distance R apart.

As before, in order to understand the influence of collapse on the
behavior of the dynamics of the system, we rewrite the collapse effect
through an effective potential (3.50). We can again write the dynamics
of the system through the usual Langevin equations for the individual
mass distributions

∂tx̂ff =
p̂α

m
(3.71)
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∂tp̂α = −mω2
0 x̂α + h̄

dBt

dt

√
λα

r2
c
− γmp̂α + χ(t) (3.72)

where the noise χ(t) is uncorrelated. The fourier transform of the
collapse force noise though is dependent on the geometry of the
system leading to

F̃α(ω) =
ih̄
√

λr3/2
c

(4π3)3/4m0

∫
dx

dBt

dt

∫
d3kρ̃α(k)e−

r2
c k2
2 −ikxk (3.73)

with dBt
dt again a white noise and ρ̃α(k) the fourier transform of

one of the mass distributions. We therefore get for the correlations of
F̃α(ω)

〈
F̃α(ω)F̃β(Ω)

〉
=

2h̄2λr3
c δ(ω + Ω)√

πm2
0

∫
d3k ρ̃α(k)ρ̃∗β(k)e

−r2
c k2

k2
x

= SFF(ω)δ(ω + Ω) (3.74)

However in the LISA experiment the monitored motion of the
system is the relative position of the two masses, such that instead
of F̃α(ω) we have to use F̃rel(ω) = 1

2

(
F̃1(ω)− F̃2(ω)

)
. Also, since

ρ̃1(k) = ρ̃2(k) we get for the force noise spectral density

SFF(ω) =
h̄2λr3

c

2π3/2m2
0

∫
d3k e−r2

c k2 |ρ̃(k)|2
(

1− eiRkx
)

k2
x (3.75)

Since LISA’s mass distribution is cuboid, we get a similar result as
in (3.63) except for a correction term which arises from the term eiRkx

in (3.75).

SFF(ω) =

16m2h̄2λ

L2m2
0

( rc

L

)4
(

1
2

e
− (R+L)2

4r2
c

(
e

RL
r2
c − 2e

L(2R+L)
4r2

c + 1
)
− e
− L2

4r2
c + 1

)
−(√πL

)
Erf
(

L
2rc

)
2rc

− e
− L2

4r2
c + 1

2

(3.76)

In the LISA experiment the two cuboid masses are essentially in
free fall encapsulated in a spacecraft which is following the motion.
In the experiment itself an acceleration noise spectrum is measured
which can be directly related to a force noise spectrum. If we now
assume that the measured noise in LISA is produced by a collapse
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Figure 3.6: The two approximately cylindrical mirror masses of LIGO with
distance d = 4 · 103m, length L = 2 · 10−1m and a diameter of
2R = 3.4 · 10−1m.

effect only, we can calculate from (3.76) the relevant parameters λ and
rc. The acceleration noise in the experiment is

Sgg(ω) = 2.7 · 10−29m2s−4/Hz (3.77)

and relates directly to the force noise spectrum Sgg(ω) = 4
m2 SFF(ω).

Another good candidate for a bound on the collapse parameters in
the high mass regime is the LIGO [25] interferometer. Here two arms
of the interferometer house two massive mirrors each with a mass of
m = 40kg. They are approximately the shape of a cylinder with radius
R = 1.7 · 10−1m and a length of L = 2 · 10−1m. The distance between
two mirrors is d = 4 · 103m. The measurement here focuses on the
relative length change of both arms ∆d = |∆d1 − ∆d2|. The induced
strain noise of the two arms is related to the relative displacement
by ∆d = hd. From this we can see that any displacement noise of the
mirrors is directly related to a strain noise measured in the experiment.
As seen above, solving the Langevin equations directly gives us an
expression for the noise spectral density in position

Sxx(ω) =
4

m2
SFF

(ω2 −ω2
0)

2 + ω2γ2
(3.78)

which for the case of the free mass limit ω � ω0 reduces to

Sxx(ω) =
4

m2ω4 SFF = d2Shh(ω) (3.79)

relating the strain noise to the corresponding force noise. The in-
ferred strain noise from advanced LIGO is about Shh(ωopt) = 10−46Hz−1

with a corresponding force noise of SFF(ωopt) = 9.025 · 10−27N Hz−1

at a frequency of ωopt = 180− 220Hz.
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Figure 3.7: Excluded regions for the parameters λ and rc for LISA (red) and
LIGO (green). The smallest value of λ is achieved for rc close to
the size of the mass distribution in the respective experiments.
The green line represents the Adler bound.

In order to calculate the effect of the collapse noise, we again use
(3.75) this time with the geometry of a cylinder for ρ̃(k).

SFF(ω) =

8λm2h̄2

L2m2
0

( rc

R

)2
(

1
2

e
− (d+L)2

4r2
c

(
e

dL
r2
c − 2e

L(2d+L)
4r2

c + 1
)
− e
− L2

4r2
c + 1

)
(

1− e
− R2

2r2
c

(
I0

(
R2

2r2
c

)
+ I1

(
R2

2r2
c

)))
(3.80)

The calculated bounds versus the parameter rc is plotted in fig:3.7
Comparing all the bounds derived so far in fig:3.8 we can see

that it is characteristic for center of mass systems to have the lowest
possible value for λ for rc being approximately the size of the tested
structure. We will look into possibilities to enhance the effect at length
scales different from the characteristic size of the structure in the next
sections.
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Figure 3.8: Excluded regions for the parameters λ and rc for LISA (red), LIGO
(green), cantilever experiments (brown, blue) and interferometry
experiments (black). Also the bound for x-ray emissions of free
electrons is included (black, dashed). The Adler bound is marked
in black, at rc = 10−7

3.6.3 Varying the density of the test mass

A method of enhancing the collapse effect of a given geometry can
be seen from the calculations of the effect on LIGO and LISA where
multiple masses with some distance between them are considered.
One way of manipulating the outcome for the collapse noise can be
achieved by considering different densities of the objects. In the case
of LIGO and LISA type experiments there wouldn’t be much of an
effect since the correlations between the different masses decreases
rapidly with distances larger than rc, which leads to quasi independent
contributions for individual masses. One might then have the idea to
reduce the distance between objects with different densities. Or more
compactly, use materials with varying densities in a geometry that
allows the same treatment than what was done in the case of LISA
or LIGO type experiments. One way to do this was suggested in [24].
The proposed setup is to layer materials with different densities in one
direction in order to benefit from correlation terms arising between
the different materials.

We have already seen in the last chapter how the langevin equation
of a system is related to the collapse effect (3.74)(3.72). If we consider
the time evolution of the center of mass from these equations with
the total mass M = ∑ mα and the total stochastic force F = Fα we
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can again calculate the noise spectral density of the force from the
correlation function of the individual noise contributions to get

SFF(ω) =
h̄2λr3

c

π3/2m2
0

∫
d3k ∑

α,β

(
ρ̃α(k)ρ̃∗β(k)

)
e−r2

c k2
k2

x (3.81)

for the x direction. As before, additional thermal noise terms are
uncorrelated. We are now mostly interested in the contributions of
the form ρ̃α(k)ρ̃∗β(k) with α 6= β. A closer look at the noise spectral
density above reveals that correlation terms are negligible for distances
d � rcbetween two mass distributions due to the non-overlap over
the collapse length. On the other hand, if one considers d� rc then
the exponential factor e−r2

c k2
only gives a contribution for |k| < 1

d and
suppresses values above, giving a minimal contribution. From these
heuristic arguments, one can see that a maximum can be achieved
by choosing a layer size in the regime of rc that one wants to test. If
we choose densities that consist of layers in one direction and a total
shape of a cuboid we can write the fourier transform of the density as

ρ̃(k) =
4 sin

(
kx L

2

)
sin
(

ky L
2

)
kxky

ρ̃z(k) (3.82)

and the layered contribution

ρ̃z(k) =
ρa sin(akz(Nl + 1)) + ρb sin(akzNl)

kze−ikz(a+ D
2 ) cos

(
akz
2

) (3.83)

with D = a(2Nl + 1) which contains the total number of layers.
Again, we can use our calculation for the geometry of a cuboid for the
contribution in the x, y directions to obtain

ηxηy =
16λr5

c

π1/2m2
0

(
1− e

− L2

4r2
c − π1/2L

2rc
Erf
(

L
2rc

))2

(3.84)

and the general expression

ηz =
∫

dkz e−r2
c k2

k2
z|ρ̃z(k)|2 (3.85)

for the z direction. This can only be solved analytically for a single
layer of constant density. In order to get solutions for layered materials,
we need to numerically analyze the above expression. The numerical
analysis shows [24] that with choosing the layer thickness, one can
select a second local maximum in (3.85) at a chosen rc. Indeed, if
using the parameters of [98] and two materials with densities ρa =

16 · 103kgm−3 and ρb = 2.2 · 103kgm−3 as well as a total height of
L = 18µm and Nl = 61 one can improve the bound for λ at rc = 10−7m
to λ ≈ 7 · 10−10s−1.



3.6 experiments testing heating due to collapse models 95

3.6.4 Influence of colored noise on the parameter bounds

We have now a good idea how different experimental setups influence
our ability to test different parameter regimes. So far we only consid-
ered the collapse noise to have a white spectrum. However, as seen
before, assuming a different kind of noise correlation can be beneficial
to address the fact that CSL is not energy conserving. To introduce a
different noise correlation [4, 5, 23] we have to start at the definition
of the noise in (3.50) where we used dBt

dt with white noise correlations.
This needs to be replaced by a more general form

〈w(x, t), w(y, s)〉 = δ3(x− y) f (t− s) (3.86)

The correlations f (t − s) denote a frequency dependence of the
noise. The CSL noise function (3.73) takes the more general form

F̃α(ω) =
ih̄
√

λr3/2
c

(4π3)3/4m0

∫
dx w̃(x, ω)

∫
d3kρ̃α(k)e−

r2
c k2
2 −ikxk (3.87)

with the fourier transform of the colored noise w̃(x, ω). Analogous
to the calculation above, we can derive the force noise spectrum to be

SFF(ω) =
h̄2λr3

c

(4π)3/2m2
0

f̃ (ω)
∫

d3k e−r2
c k2

k2
x|ρ̃α(k)|2 (3.88)

with the fourier transform of the colored noise correlations f̃ (ω).
This convenient expression is identical to the white noise case, except
for the correlation function. If we assume that f (t− s) is exponentially
decaying for a cutoff at a correlation time τ we can write

f (t− s) =
1
τ

e−
|t−s|

τ (3.89)

where for τ → 0 we recover the white noise correlations. The fourier
transform of this function is

f̃ (ω) =
ω2

τ

ω2
τ + ω2 (3.90)

with ωτ = 1
τ .

The correct choice (if any) of frequency ωτ is unknown so far and
can only be inferred from possible experiments that detect a collapse
effect in a certain frequency regime. However, if there is a noise field
responsible for collapse, it can be assumed to have a cosmological
origin. If that is the case, then looking at cutoff frequencies related
to cosmological phenomena might give a clue on where the cutoff
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Figure 3.9: Comparison of induced force noise due to cCSL collapse and its
dependence on the cutoff frequency ωτ . Cantilever experiments
[97, 98] (Blue, Orange) do not get affected until cutoff frequen-
cies of ωτ ≤ 105Hz. If one takes into account high frequency
experiments (analysis of [27] in green, analysis of waveguide
experiments [67] in red), the cutoff becomes relevant for these
experiments at ωτ ≤ 1011Hz which corresponds to a cutoff char-
acteristic for cosmological phenomena.

could happen. If we assume, for example, that the cosmic background
radiation constitutes a reasonable cutoff, we would get a cutoff value
of the order of ωτ ≈ 1012s−1. This would already rule out bounds from
X-ray experiments, since the relevant frequencies there are of the order
of ωX ≈ 1019s−1, but would allow cantilever experiments to still test a
possible collapse heating effect. Potentially, the cutoff could also be at
higher frequencies, associated with other cosmological phenomena,
like WHIM (warm-hot intergalactic medium). But as mentioned before,
only experimental data could give a conclusive answer to this question.
A comparison of different collapse experiments and their dependence
on the cutoff frequencies can be found in fig:3.9.
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3.6.5 Dissipative collapse models

As we introduced in the previous chapters, another way of refor-
mulating collapse models with energy conservation, is to introduce
dissipation into the model [75, 90]. We already showed the emerging
Lindblad equation (2.231) and the corresponding Lindblad operator
(2.230)

L(Q, P) =
m

(2πh̄)3

∫
dQe−

i
h̄ Q·xe−

r2
c

h̄2 (|(1+k)2Q+2kP|2) (3.91)

In order to describe experiments under the influence of this dissipa-
tive collapse, we need to find an effective linear stochastic description
of the time evolution in order to incorporate it into langevin equations
of the system. Similar to the white noise case, we will compare the
expression to the linear stochastic equation that reproduces the Lind-
blad form of the master equation of the dissipative model. A general
form of such a linear stochastic equation is

d |φ〉 =
{
− i

h̄
Hdt + dC +

1
2

〈
dC†dC

〉}
|φ〉 (3.92)

with an operator C defined as

C =

(
λr3

c

(4π)3/2m2
0

)1/2 ∫
d3x

(
L(x)Bt + L†(x)Bt

)
(3.93)

with Bt our usual white noise. Following the calculation from [75],
we can find an effective master equation for the center of mass, which
reads

∂tρ = − i
h̄
[H, ρ]− η[x̂, [x̂, ρ]]−

γ2
CSL

16ηh̄2 [ p̂, [ p̂, ρ]]− iγCSL

2h̄
[x̂, { p̂, ρ}]

(3.94)

with

η =
λr3

c

2(4π)3/2h̄5m2
0

∫
dQ |µ̃(Q)|2e−

r2
c (1+k)2

h̄2 Q2
Q2

x (3.95)

and

γCSL = η
8r2

c (1 + k)
N

(3.96)
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where N is the number of particles of the mass. The structure above
reveals decoherence both in position and momentum as well as an
additional dissipation term. We can also write the state vector equation

d |φ〉 =
{
− i

h̄

(
H +

γCSL

4
{x̂, p̂}

)
dt +

(
x̂ + i

γCSL

4ηh̄
p̂
)

dB†
t

−
(

x̂− i
γCSL

4ηh̄
p̂
)

dBt − η

(
x̂2 +

(
γCSL

4ηh̄

)2

p̂2

)
dt

}
|φ〉 (3.97)

and extract the langevin equation for the operators in the Heisenberg
picture. If we use our standard model for a harmonic oscillator (3.51)
we can write down the explicit equations

∂tx̂ =
p̂
m
− γCSL

4η

((
dBt

dt

)†

+
dBt

dt

)
(3.98)

∂tp̂α = −mω2
0 x̂α − ih̄

((
dBt

dt

)†

− dBt

dt

)
− (γm + γCSL)p̂α + χ(t)

(3.99)

contributing decoherence in position and momentum as well as
damping. We again calculate the noise spectral density from these
equations to get

Sx(ω) =
1

m2

2mγmkBT + 2h̄2η(1 + γCSL
4ηh̄ m2(γ2 + ω2))

(ω2
0 −ω2)2 + γ2ω2

(3.100)

and we can extract the temperature gain of

∆TCSL =
h̄2η(1 + γCSL

4ηh̄ m2(γ2 + ω2
0))

kBmγ
− γCSL

γ
T (3.101)

One thing to note here is that the above expression, contrary to the
standard CSL model can be negative if the environment temperature
exceeds the temperature of the dissipative CSL model and one can
have a cooling effect. Depending on the characteristic temperature
of the dissipative CSL model, we will see a cutoff of the effect. This
originates from the diffusion constant η (3.95) which for (1 + k) ≈ 1
reproduces the standard CSL calculations. However, if

TCSLr2
c �

h̄2

8m0kB
(3.102)
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we will expect to see deviations from the standard calculation. If
we assume that again the origin of this additional noise is found in
cosmological phenomena, we would expect TCSL to be at the order of
TCSL ≈ 1K. So changes to the experimental outcomes would only be
expected at rc � 10−9m. If one considers the full expression in (3.100)
a secondary term also has to be considered, since also the damping is
modified. Taking the term from the modified temperature (3.101) in
the numerator κ = h̄2η(1 + γCSL

4ηh̄ m2) we can put in the definitions of k
and γCSL to arrive at

κ = η

h̄2 +

(
h̄2

8kBTCSLrcm1/2
0

)4
 (3.103)

which becomes only relevant for very low temperatures TCSL � 1K
or very high frequencies ω0 ≥ 1014s−1 at TCSL ≈ 1K (due to the
additional term depending on ω (3.101)).
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H E AT I N G A N D S U P P R E S S I O N O F P H O N O N S

4.1 gain through high q and snr

In all the above discussed experiments there is one key feature used
to improve bounds. The relation (3.61) shows that the effect can be
improved by increasing the Q-factor of the system while reducing
the resonance frequency of the system. This inevitably leads to either
more massive oscillators or one has to use the scaling of layers of
different density to probe collapse models at small values for rc effi-
ciently. However, this does not need to be true if one considers instead
of the temperature increase, the mean phonon occupation number.
Specifically, we are interested not only in the increase of mean phonon
occupation number due to collapse models but also in the signal to
noise ratio between the collapse effect and other noise effects, like
thermal noise. In the cases, where we are well within the regime of
the equipartition theorem h̄ω0 � kBT the ratio of change of phonon
number due to CSL and change of phonon number due to thermal
effects is

SNR =
λη(rc)

γnB
= Q

h̄λη(rc)

kBT
(4.1)

where we used the phonon number change
〈
m†m

〉
− nB = Qλη/γ

and that the average phonon number is nB ≈ kBT/h̄ω0. As can be
seen from this, increasing the Q-factor enhances the effect as well as
a lower temperature. However, since the phonon occupation number
follows a plank distribution in general nB = (eh̄ω0/kBT − 1)−1 the SNR
changes in the regime where h̄ω0 ? kBT to an exponential dependence
nB ≈ e−h̄ω0/kBT giving

SNR =
λη(rc)

γnB
= Q

λη(rc)

ω0e−h̄ω0/kBT (4.2)

where we keep an improvement due to higher Q-factors but also
get an exponential increase with frequency. This can also be seen
as a reason for the strict bound arising from X-ray emissions where
the effective signal for collapse is largely enhanced. This effect is
only suppressed in modifications of CSL like adding colored noise
or dissipation. However, as discussed above, this cutoff is typically
assumed to have a cosmological origin, which puts this cutoff at about
ωcuto f f ? 1011Hz. For sufficient cooling of the setup it is thus possible
to reach the regime of enhanced SNR for frequencies below the cutoff.
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For example, integrated cantilever experiments operate at frequencies
of about ω/2π ≈ 5 · 109Hz, at cryogenic temperatures of T ≈ 20mK
which is in the regime of h̄ω0 ? kBT.

Another aspect, beneficial for high frequency experiments is a po-
tentially higher Q-factor, since the main contributor to damping for
high frequency oscillators at cryogenic temperature is clamping losses.
At the characteristic size of gigahertz structures, a new technique to
reduce damping, phononic shields, can be applied. These devices be-
come small enough at these frequencies to be directly integrated onto
the structure and can be made of the same material. The design goal
of phononic shields is to create an effective band gap at the resonance
frequency of the oscillator. This prohibits excitation to propagate out
of the resonator, effectively isolating it from the support structure
and environment. One might consider to go even smaller, though at
smaller sizes, which could reach resonance frequencies of ω ≈ 1010Hz,
the structure size becomes too small for the manufacturing methods
available.
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4.2 breathing mode calculation

The above experiments discussed in Chapter 2 all use center of mass
motion of their test masses to infer a change in temperature behavior
of the harmonic motion. However, the heating originating from the
stochastic influence of the collapse model should also be visible in the
behavior of non-center of mass modes and their phonon number. Such
a change of occupation number on average can also be used as a test
bed for collapse models.

In order to describe such an effect, we have to revisit the calculation
of the geometry factor η and its relation to density fluctuations. Similar
to the approach to consider different densities in one structure to
enhance the collapse effect for different length scales, we can also see
a relative motion of atoms in a lattice as density fluctuations of the test
object. Let us see, how we can incorporate this effect into the existing
model.

We start out at the general form

d
dt

ρ = − i
h̄
[ρ, H]− γ

∫
d3x [M(x), [M(x), ρ]] (4.3)

introduced earlier for the master equation with mass operator

M(r) =
1√

2πr2
c

∑
i

mi

m0
e−(x−xi)

2/2r2
c (4.4)

To understand the additional term in context of mode displacement,
we need to introduce the canonical evolution of the system under
investigation. In a harmonic oscillator system the position of one atom
in the lattice xi can be decomposed into its equilibrium position xi,0
and a displacement term δxi. This displacement term can be written
in terms of a normal mode decomposition with modes j, giving

δx̂i = ∑
j

xzpf,j q̂j dj(xi,0) (4.5)

with xzpf,j = (h̄/2meff,jΩj)
1/2 the zero point fluctuation, the mode

operator q̂j of the j-th mode and a unitless displacement field dj(xi,0)

which is normalized to one. This definition allows us to write the
effective free Hamiltonian of the operators q̂j, p̂j as

He f f =
1
2 ∑

j
h̄Ωj

(
q̂2

j + p̂2
j

)
(4.6)
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with mode frequencies Ωj. If we assume a thermal bath interacting
with our phonon modes, and use a viscous damping model we can
write the master equation for a single mode j as

dρ

dt
= −

iΩj

2

[
q̂2

j + p̂2
j , ρ
]
−

iγj

2
[
q̂j,
{

p̂j, ρ
}]
−

γj
(
2nB,j + 1

)
2

[
q̂j,
[
q̂j, ρ

]]
(4.7)

with γj describing the damping of the system due to the thermal
bath and nB is the mean phonon occupation number. This approach
is well justified for measurements of single mode mechanical power
measurements.

We now want to look for a mode description of our collapse influ-
ence on the master equation. We rewrite (4.4) as its fourier transform

M(x) =
r3

c

(2π)3/2m0

∫
d3ke−

r2
c k2
2 eik·x ∑

i
mie−ik·xi (4.8)

and get for our Lindblad term

LCSL = − (4π)3/2λr3
c

2m2
0

∑
i,j

mimj

∫ d3k
(2π)3 e−r2

c k2
[
eik·xi ,

[
e−ik·xj , ρ

]]
(4.9)

Now in order to incorporate the displacement due to excited modes,
we introduce (4.5) into (4.9). The term

∑
i

mie−ik·xi = ∑
i

mie−ik·xi,0 e−ik·xzpf q̂ d(xi,0) (4.10)

assuming a single mode can be simplified by using µ(r) = ∑i miδ(r−
xi,0) which represents the mass localized at the lattice points.

∑
i

mieik·xi,0 eixzp f k·d(xi,0) q̂ =
∫

d3r µ(r)eik·reixzp f k·d(r) q̂ (4.11)

We can now use this result to incorporate it into (4.9) to get

LCSL[ρ] = −
(4π)3/2λr3

c

2m2
0

x
d3r d3r′ µ(r)µ(r′)

∫ d3k
(2π)3 e−r2

c k2
eik·(r−r′)[eixzpfk·d(r)q̂, [e−ixzpfk·d(r′)q̂, ρ]] (4.12)

If we assume small displacements compared to the CSL length rc

we can taylor expand the exponential for small displacement |k| ·
x2

zpf 〈q̂〉 /rc � 1

eixzpfk·d(r)q̂ = 1 + ixzpfk · d(r)q̂ +O(x2
zpf) (4.13)
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in terms of the zero point fluctuation xzpf and finally obtain

LCSL[ρ] = −λx2
zpfκ[q̂, [q̂, ρ]] (4.14)

with a new geometry factor

κ =
(4π)3/2r3

c

2m2
0

∫ d3k
(2π)3 e−r2

c k2
∣∣∣∣∫ d3r eik·rk · d(r)ρ(r)

∣∣∣∣2 (4.15)

This deviates from the center of mass expression, in that it now
contains the mode shape of the single mode j through the displacement
function d(r). Most importantly, although the contribution of the
absolute value is always positive, the inside sum can also have negative
components, similar to the correlation terms for varying densities. In
this expression there is no need for a constant displacement d = const.
with regards to the mode or the center of mass. However, we can see
that for constant displacement over the whole density, we can recover
the same expression for the geometry factor as seen in the center
of mass calculations. This implies that we have to treat non-COM
motions according to the above equation. This is in contrast to the
description in [16] where the mode is described as two separate center
of mass motions. The addition of the mode shape however leads to a
strongly oscillating integrand (with respect to rc) effectively canceling
out most of the contribution to the geometry factor. Explicitly, if we
consider a mode with mode shape d(r) = ez · cos(koz) and calculate
the mode shape expression for a rod with radius r0 and length L

ζ =
∫

d3r eik·rk · d(r)µ(r)

=
∫ 2π

0
dφ
∫ r0

0
dr
∫ L/2

−L/2
dz rkz cos(kzz + krr) cos(k0z)µ0 (4.16)

we arrive at

ζ = 2πµ0kz

[
sin
(
(kz − k0)

L
2

)
kz − k0

+
sin
(
(kz + k0)

L
2

)
kz + k0

]
1

2

sin
(

krr0
2

)
kr/2

2

− r0
sin(krr0)

kr

 (4.17)

In this case, we can separate the axial and radial contributions, writ-
ing ζ as a composition of two functions ζ = 2πµ0 fr(kr, r0) fz(kz, k0, L).
If we assume that we have a high frequency acoustic resonance L� 2π

k0
we can simplify the above equation and get the expression for κ to be

κ(rc) ≈
(4π)3/2r3

c

2m2
0

h̄πk2
0µ0

2Ω
Lµ0

meff
e−k2

0r2
c ·
∫ ∞

0
dkrkr f 2

r (kr, r0) (4.18)
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with meff the effective mass of our mode and 1/k0 the wavelength.
We can see that for small wavelength of our acoustic mode, we get
an exponential damping from the factor e−k2

0r2
c while the effect itself is

independent of the length of the rod L (a scaling of L ∝ m0) as long
as we have L� 2π

k0
. Therefore, any contributions from modes that are

strongly oscillating (compared to rc) become negligible along the base
length of the cylinder.
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4.3 bulk acoustic resonators

Another effect of (4.18) is that it is independent of the length of the
rod for L� 2π

k0
. Surprisingly, this means that an increase in mass of

the test mass does not lead to an increase of the collapse effect, in
fact it can be detrimental. This can be seen by analyzing the following
setup [27] for a bulk acoustic resonator with a given mode shape

sl,m = sin
(

lπz
h

)
J0

(
2j0,mr

d

)
(4.19)

with l = 503, m = 0 and a frequency for the phonon mode of
ω/2π = 6.65 · 109Hz with Q = 7.1 · 105. The structure is a disc with
diameter d = 10−4m and a height of h = 4.2 · 10−4. The effective
mass of the mode is me f f = 8.77 · 10−12kg compared to its total mass
of m = 1.32 · 10−9kg. We can directly calculate the effect of collapse
heating by using the mode shape |d(r, z)| = sl,m to get

η =
(4π)3/2λr3

c

2m2
0

ρ2x2
zpf2π

∫ ∞

0

f (kz)

(hkz − πl)2(hkz + πl)2 dkz∫ ∞

0
e−2k2r2

c
f (kr)

(d2k2 − 4 (j0,1) 2) 2 dk (4.20)

with

f (kz) = hkz

(
4π4d2h2k2

zl2r2
0e−2k2

zr2
c

(
−2 cos(kzz0) cos

(
πlz0

h

)
+ cos2

(
πlz0

h

)
+ 1
)

+hkz sin2
(

πlz0

h

)
− 2πl sin(kzz0) sin

(
πlz0

h

))
(4.21)

f (kr) =

(
d kJ1(kr0)J0

(
2r0 j0,1

d

)
− 2j0,1 J0(kr0)J1

(
2r0 j0,1

d

))2

(4.22)

where Ji denote Bessel function of order i. Similar to the above
simplified structure since l = 503 we again have the condition z0 � 2π

k0
diminishing the collapse effect on our geometry factor. To make the
notation more transparent, we define η = λx2

zpfκ to have κ only depend
on the geometry of the probe mass. Evaluating the effect on κ of the
mode shape gives a maximum value of κ ≈ 2.7 · 103 at rc ≈ 2 · 10−7m
fig:4.1.

We now want to extract the bound on the collapse rate λ. The
total phonon number compared to the expected phonon number from
thermal contributions can be written as

〈
m†m

〉
=

γnB + λx2
zpfκ

γ
(4.23)
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Figure 4.1: The unitless geometry factor κ as a function of the collapse pa-
rameter rc with a maximum at rc ≈ 2 · 10−7m of κ ≈ 2.7 · 103.

which immediately leads to

nadd =
h̄Qλκ

2me f f ω2 (4.24)

where we used γ = ω/Q. We can directly express λ as

λ =
2naddme f f ω2

h̄Qκ
(4.25)

The maximum value for λ at a mean phonon occupation number of
nadd = 0.003 in this setup at rc ≈ 10−7m is λ ≈ 0.72Hz fig:4.2, which
constitutes a very weak bound. From our theoretical analysis we
already expected a diminished effect, since contributions from mode
shapes of the type d(r) = ez · cos(koz) scale unfavorably. Another
downside here is the relatively low Q-factor which is one of the main
compensations for the high frequency regime.
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Figure 4.2: The exclusion region for the collapse parameters λ and rc for
the structure in [27]. The exclusion region is rather weak due to
dominating anti correlations in the mode shape.

4.4 new experiment with gigahertz structures

Another system worth considering is the experiment described in [67].
An optomechanical crystal is used as a waveguide with optical and
mechanical resonances localized on the region. The waveguide is made
of silicon and is suspended on an integrated device. It features vertical,
oval holes in the middle of the beam modifying the speed of light
and sound within fig:4.3. The size of the holes varies over the length
of the waveguide, resulting in a localization of the resonances of the
optical and mechanical excitation. The mechanical vibration typically
leak out of such a resonator configuration due to transforming into
an anti-symmetric wave, which is not confined. To circumvent this
phenomenon, the waveguide is embedded into an acoustic radiation
shield. This acoustic radiation shield itself is a phononic crystal that
has a bandgap around the resonance frequency of the waveguide, ef-
fectively isolating it from any acoustic environment. The resonator in
question has a resonance frequency of ω/2π = 5.0 · 109Hz, and an ef-
fective mass of me f f = 6.8 · 10−17kg. The phonon excitation is induced
by a photon with wavelength λ ∼ 1550nm. The quality factor of this
device is a remarkable Q = 4.9 · 1010. The mean phonon occupation
number is measured by comparing the stokes and anti-stokes scatter-
ing rates. If we can achieve an initial phonon occupation number with
devices like [67] of n ≤ 10−3, the described setup becomes competitive
for new bounds on collapse models. To get a first estimate, if we take
n = 0.001 as the phonon number that can be at most attributed to a
collapse effect compatible with CSL after measurement time, we can
calculate an exclusion region for the parameter space.
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Figure 4.3: Picture of the waveguide. The oval holes are designed to act
as a quasi cavity for both the acoustic and optical excitations.
The phonon excitation has a resonance frequency of ω/2π =
5.0 · 109Hz with a Q-factor of 4.9 · 1010.

Figure 4.4: Picture of the acoustic shield. The cross structure exhibits an
acoustic bandgap of ∆ f = (6.5− 3.5) · 109Hz centered around the
resonance frequency of the waveguide.
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Figure 4.5: The simulated mode shape of the acoustic resonance at ω/2π =
5.0 · 109Hz. The mode shape was simulated in COMSOL with a
finite element method.

In order to evaluate the effect of CSL noise on the device, we obtain
the mode shape through finite element simulation.

Evaluating

ξ =
∫

d3r eik·rk · d(r)ρ(r) (4.26)

using the finite element method, as well as calculating the wavenumber
integral

∫ d3k
(2π)3 e−r2

c k2 |ξ|2 (4.27)

with the Monte Carlo method, we get the maximum value at rc ≈
10−7m of κ = 5.73(5) · 105. Compared to the previous experiment
analyzed [27], we have an increased κ by two orders of magnitude.
This is due to the specific mode shape in this experiment, only having
one node in the center of the structure. The diminishing effect of
an oscillating mode shape is avoided here. We can use the same
calculational steps as before to determine possible bounds for the
collapse rate λ. We can see that in this setup we have several relevant
parameters improved compared to the previous analysis. The phonon
occupation number here is about a factor 3 smaller, the Q-factor is
increased by a factor 105, the effective mass is lower by another factor
105, while κ is also increased by two orders of magnitude. All in all,
this amounts to a bound at rc ≈ 10−7m of λ = 1.13 · 10−9Hz. We
did not take into account the induced phonon number from thermal
excitations, instead attributed the total phonon number to an effect of
CSL, giving a conservative upper bound.

An experimental verification of these initial phonon numbers as well
as conclusive bounds are under investigation right now, and might
even rule out the regime proposed by Adler to explain latent image
formation. The proposed method is also within the validity for colored
noise models if one assumes a cutoff at ωτ & 1011Hz (fig:3.9).

Using high frequency harmonic oscillators was also used in the
proposal [36]. A more complete analysis of possible noise contributions
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Figure 4.6: Comparison of the bound on the parameters λ and rc for the
experiment presented here (green), compared to the cantilever
experiments [97, 98] (gray).

Figure 4.7: Comparison of various experiments with their Q-factors com-
pared to their frequency regime. High quality factors benefit the
heating effect of collapse models, while high frequencies enable a
higher signal-to-noise ratio. If the proposed CSL UV cutoff is of
cosmological origin, it leaves a window of frequencies to exploit.
Another limitation is the design of devices, higher frequency de-
vices need smaller manufacturing scales, creating a limitation at
frequencies above ω & 1011Hz.
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was given where, alongside thermal noise, noise contributions due to
probe photon leaking, measurement-induced phonons, coincidence
dark counts and environmental vibrational noise were considered.
The readout process here is done through coincidence counts by
downconversion of the signal photon. This is done to reduce dark
counts from the detectors. The full calculation of the incidence counts
due to CSL can be found in the paper and amount to R = λκη ≈ 102λ

with the reduction of efficiency given by η ≈ 10−3. Similar to our
above calculation, the sensitivity of such a setup would be competitive
to test the Adler bound, since the coincidence counts due to other
noise sources are of the order R ≈ 10−10. However, another issue
pointed out in this work is the average signal time due to collapse
which is given by t = (λκη)−1 ≈ 109s or roughly ≈ 54 years. In
order to reduce measurement time an array of devices could be used.
The measurement time would scale inverse linear with the number
of devices. At a device number of N ≈ 104 the measurement time
required would reduce to t ≈ 105s or ≈ 2 days.

The employment of high frequency mechanical oscillators as test bed
for collapse models seems to be a very promising avenue. Experiments
are closing in on the potential parameter regions in which one would
expect collapse models to become relevant. One of the advantages of
optomechanical systems like the ones mentioned here is the operation
close to a potential frequency cutoff due to colored noise. Contrary to
the X-ray experiments [29] who operate in a frequency regime where
the cutoff is expected, this approach would probe parameters beyond
the Adler bound. In fact, varying the resonance frequencies of the
device one could map the potential cutoff region.





5
C H A M E L E O N F I E L D S A N D T O R S I O N P E N D U L U M S

As previously discussed in the theory section (chapter 2), a new class
of scalar fields, chameleon fields, can be introduced to the standard
model with unique properties. We discussed the theoretical side of
this “screening” mechanism, camouflaging the effective force of these
chameleons. However, the screening radius (2.255) becomes smaller
and smaller for masses with given density but smaller and smaller
radii. This makes chameleon fields and forces subject to test in tabletop
experiments. One of the first analyzed setups is the Eöt-Wash experi-
ment described in [55] and used for constraints of the chameleon field
in [94, 95]. In this experiment two disks with 42 holes in them are
placed parallel to each other. One acts as a torsion pendulum while
the other is slowly rotated. Due to gravitational interaction the torsion
pendulum disk aligns its holes with the second one, giving a torque
that can be compared to the expected newtonian force. Initially, the
experiment was devised to test the inverse square law of gravity with
high precision. But Upadhye et. al. showed that such experiments can
be used to put bounds on the chameleon parameters, thus testing
chameleon predictions in tabletop experiments. In a follow up paper
[94] the authors argue that the bounds on chameleon forces can be
drastically improved in the regime of β = 0.1 (mass coupling 10−1MPl)
and n ≥ 2.

Another set of experiments proposed in [52] uses atom-interferometry
to test constraints on the chameleon field. Here the difference in acceler-
ation of the atom travelling through the two arms of the interferometer
induces a phase shift. Measuring the interference pattern then allows
to put constraints on the chameleon force. One of the challenges for
such experiments is to determine the exact chameleon force in the
setup. Since only very simple configurations have analytical solutions,
numerical analysis becomes necessary. As was demonstrated in [35] a
numerical analysis using the Gauss-Seidel method is viable.

We want to apply a similar analysis to a recently published experi-
ment [102], which also uses a torsion pendulum method to measure
the gravitational interaction between two small (r ≈ 1mm) spheres
comprising the smallest gravitational source mass in an experiment to
date. In order to do so the source mass is mounted on a piezo arm,
oscillating at a frequency of f = 12.7mHz. The test mass is mounted
on a torsion pendulum brought close (d ≈ 2.5mm center to center).
The readout is done through angular reflection from the pendulum. In
order to detect the gravitational interaction, other forces influencing
the setup have to be minimized. Specifically, charges on the spheres

115



116 chameleon fields and torsion pendulums

could contribute a strong (relative to the gravitational interaction)
force. The spheres are therefore discharged as best as possible, as
well as separated by a gold coated aluminium membrane of thickness
(∆d ≈ 150µm). In order to determine the chameleon contribution on
such a setup, all components have to be taken into account.

We first need to define the expected minimum field in a typical
experimental setup. In order to get an idea of the expected field at
equilibrium in an empty chamber one might be tempted to use (2.248).
However, care has to be taken. If the chamber is smaller than the
expected Compton wavelength λc (2.249), the field will not equilibrate
within its confines to the expected minimum. Instead we need to take
the approximate chamber radius as new λc(e.g. λc ≈ rchamber) to get
an educated guess for the minimum. The vacuum chamber size on
the inside is 13.8cm × 9cm × 9cm. We approximate the radius of the
chamber as rchamber ≈ 4.5cm. Using the relation for the expected φmin
and the compton wavelength (2.249)

1
n(n + 1)Λ4+n φn+2

bg ∝ r2
chamber (5.1)

φbg = ξ
(

n(n + 1)Λ4+nr2
chamber

) 1
n+2

(5.2)

we expect a minimum value at ξ = 0.7± 0.1 as in [35, 52] giving
φbg ≈ (0.141± 0.02)eV. We then know all parameters to calculate the
characteristic screening radius for a sphere embedded in φmin using
(2.255).

As can be seen from fig:5.1, the screening radius drops to zero for
spheres of radius below rs ' 1.2mm in this approximation. However,
the screening radius rs is highly dependent on the minimum value
of the field and the field geometry within the chamber. Since our
geometry within the chamber contains two spheres plus a membrane,
we still expect screening. On the other hand, since the sphere size in
[102] is approximately rs ' 1mm, we expect to see a small enough
screening that the additional force might be resolvable.

When considering the full setup, the membrane has to be taken into
account. This complicates the calculation for chameleon forces, since
purely spherical approximations are not valid anymore. A numerical
analysis of the setup is necessary. We will model the chamber in [102]
as a cylinder with height h = 13.8cm and diameter d = 9cm. This
enables us to write the evolution equation as

∇2φ(h, d) =
1
M

ρ(h, d)− nΛ4+nφ(h, d)−(n+1) (5.3)

reducing it to a 2-dimensional problem. We can rescale this equation
[81] by using φ/Λ→ φ, β/Λ3 → β, Λr → r to arrive at

∇2φ =
1
M

ρ− nφ−(n+1) (5.4)
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Figure 5.1: Screening radius as a function of sphere radius in a chameleon
background φbg. If only one sphere is considered the screening
radius is larger than the sphere size rs ≈ 1mm.

giving us unitless quantities for the involved parameters. We then
use a discretization of the vacuum chamber and the spheres and
membrane fig:5.2 for the density distribution in (5.4) where we break
up the density into squares totalling #cells = 11612 initially.

The number of cells is chosen such that the shielding membrane in
the middle is represented by one pixel, making the pixel sidelength
∆x = 150µm. We use a Gauss-Seidel algorithm to solve for the given
geometry. The discretized equation of (5.4) takes the form

φi,j = w ·
[

1
4
(
φi+1,j + φi−1,j + φi,j+1 + φi,j−1

)
−∆x2

4

(
1
M

ρi,j − nφ
−(n+1)
i,j

)]
+ (1− w) · φi,j (5.5)

To avoid instabilities in the numerical calculation we use the same
approach as in [35] where we introduce a parameter w to tame those
instabilities. It turns out that a choice of w = 0.3 seems optimal in
terms of convergence of the numerical simulation. The initial reso-
lution is not high enough to determine the accelerations on the test
mass. After sufficient convergence of the solution we increase the
resolution of the density distribution to #cells = 46442. The increased
number of cells gives us enough points per sphere to infer the total
acceleration of the test mass. An increase to #cells = 92882 did not
show a meaningful change of the calculated acceleration. We fix the
parameters Λ = 2.4 · 10−3eV and n = 1, as well as M = MPl (β = 1).
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Figure 5.2: Density grid of the vacuum chamber with the two spheres and
the thin membrane.

The total acceleration on the test mass is

ah = −
∫

Ω∈Sphere

1
M

∂hφ dΩ (5.6)

which is effectively the sum of the contributions of each cell within
the test mass.

We first simulate an empty chamber fig:5 to see if our numerical
results are matching the expected field strength as calculated with
(5.2).

From here we move to the simulation of the setup in [102] with two
spheres and a membrane in the middle. The spheres are made of gold
with a density of ρs = 19300kg/m3 and at a mean COM distance of
∆d = 4.15mm. The amplitude of the modulation was ∆d = 1.65mm
giving a minimum distance ∆dmin = 2.5mm and a maximum distance
∆dmax = 5.8mm. The membrane is made of aluminium with a density
of ρm = 2700kg/m3. The distance is modulated through the source
mass. In order to know the influence of the chameleon force, we
simulate both extreme positions.

The potentials show a background field ofφbg ≈ 127meV with the
potential landscape shown in fig:5.4. The screening mechanism is
visible in a plot along the center line of the chamber, showing the
screening effect more prominently within the sphere towards the
center of the chamber (fig:5.5).

In order to extract the acceleration, we use (5.6). The accelerations
within the chamber are shown in fig:5.6

Given our numerical simulations we can now give the fifth-force
accelerations of the test mass with respect to the two evaluated posi-
tions. For the minimum distance ∆d = 2.5mm, the acceleration of the
test sphere is a = 2.224 · 10−11m/s2. For the maximum distance we get
a = 1.341 · 10−11m/s2. This leaves us with an acceleration difference
of ∆a = 8.84 · 10−12m/s2 (fig:5.7).
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Figure 5.3: Empty chamber side view with h = 13.8cm and d = 9cm. The
field strength reaches a maximum at φbg = 146meV, close to the
predicted value from (5.2).
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(a) (b)

(c) (d)

Figure 5.4: The chameleon potential within the vacuum chamber for sphere
positions ∆d = 2.5mm (a),(b) and for sphere positions ∆d =
5.8mm (c),(d)
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(a) (b)

Figure 5.5: Plot of the potential along the centerline of the chamber for
distances of the spheres of (a) ∆d = 2.5mm and (b) ∆d = 5.8mm.
The minimum of the potential inside the spheres is reached well
before the centerpoint of the spheres, showing the screening
effect.

(a) (b)

Figure 5.6: Pointwise fifth-force accelerations within the chamber for dis-
tances of the spheres of (a) ∆d = 2.5mm and (b) ∆d = 5.8mm.

(a) (b)

Figure 5.7: The pointwise fifth-force acceleration of the test mass for distances
of the spheres of (a) ∆d = 2.5mm and (b) ∆d = 5.8mm.
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(a) (b)

Figure 5.8: Plot of the potential along the centerline of the chamber for
distances of the spheres of (a) ∆d = 2.5mm and (b) ∆d = 5.8mm
without membrane in the middle. The minimum of the potential
inside the spheres is reached well before the centerpoint of the
spheres, showing the screening effect.

Comparing this result with the precision of measurement in [102]
∆a = (3 · 10−10 ± 3 · 10−11)m/s2 shows that the chameleon effect can
not be resolved as of yet, giving a contribution of about ∼ 2.5% of the
gravitational acceleration. However, a new iteration of the experiment
is in preparation right now, making it feasible to use torsion pendulum
experiments such as this to detect possible fifth force accelerations in
the near future.

For completeness, we also simulated the same setup without the
membrane in the middle for comparison. The results can be found in
fig:5.8.

The accelerations without membrane are a = 2.419 · 10−11m/s2, a =

1.216 · 10−11m/s2 for the minimum and maximum distance and the
acceleration difference is ∆a = 1.203 · 10−11m/s2. The influence of the
membrane in this setup cannot be neglected, the relative acceleration
is reduced by ∼ 26%.

In conclusion, torsion pendulum experiments have been shown
to be viable test beds for measuring the gravitational force of small
objects. Steady development will allow to detect gravity between
masses as small as even the Planck mass. In this regime, models like
the chameleon scalar field are expected to become comparable in
strength to the gravitational interaction. We have demonstrated the
feasibility of the above setup for searching for potential fifth forces,
which could explain the accelerated expansion of our universe and the
elusive origin of dark energy. Future iterations of this experiment will
have higher precision and can potentially measure the gravitational
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interaction of even smaller masses (down to the Planck mass), giving
a greater contribution of the predicted chameleon force.





6
C O N C L U S I O N S & O U T L O O K

In this work, we explored novel decoherence phenomena, induced by
either the introduction of time dilation, gravitational wave background
or modifications of quantum mechanics. Be it gravitational in origin, or
due to the attempt to describe a quantum to classical transition, these
decoherence signatures could give new insight into the connection of
quantum mechanics and general relativity. We characterized multiple
different forms of decoherence, being either introduced naturally due
to gravitational phenomena or added artificially to accommodate a
transition from a microscopic- to a macroscopic/classical description.
The gravitational decoherence can be divided into two approaches.
Decoherence due to a time dilation of degrees of freedom predicts
decoherence of superposition under the influence of a general rela-
tivistic action, a novel effect, that can only be attributed to the peculiar
properties of general relativistic proper time. This effect is not univer-
sal in the sense that it only appears if the superposition has a clock
degree of freedom, keeping track of the proper time difference. In
the case of massive superpositions in a gravitational field, the effect
only manifests if there is a height difference in the superposition
perpendicular to the source of gravity. The effect becomes relevant
in macroscopic systems, where a superposition of size δx ≈ 10−3m
with gram scale masses produces decoherence times of τ ≈ 10−6s.
Reaching meaningful decoherence for experiments however seems
unfeasible for the moment.

The second approach is to consider the influence of gravitational
waves as a stochastic background. The origin of the background is
assumed to be gravitational wave sources like binary star systems in
our galaxy or beyond. In the low frequency regime, this background
takes the form of a gaussian stochastic field, modeled as brownian
motion. These stochastic background effects could be measured via
sagnac interferometry picking up a phase uncertainty. For space based
interferometers the effect is rather small though, making a detection
in such systems unlikely in the near future.

Another candidate for additional decoherence effects is modifica-
tions of quantum mechanics. One of the most prominent classes of
theories here are collapse models, predicting a nonlinear collapse of
superpositions to definite position states. This collapse strength is
dependent on the mass of the system, leading to an effective quantum
to classical transition, suppressing macroscopic superpositions. Since
collapse models are phenomenological models, the exact transition is
encoded in two free parameters, the collapse rate and collapse length.
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In order to enable quantum mechanics in microscopic system, as well
as account for classical behavior in macroscopic systems, theoretical
bounds on the parameters are given, however there is still a large
parameter space to be probed. We analyzed multiple approaches to
accomplish this, including interferometry and taking advantage of
the stochastic nature of collapse models to infer bounds through an
additional heating intrinsic to these models.

We proposed in this work a new way of testing this parameter space
with high frequency oscillators, exploiting the phonon occupation
of a breathing mode. This is in contrast to previous proposals, only
aimed at center of mass degrees of freedom to probe a heating effect.
For a low phonon occupation number these new systems become
competitive to test collapse models with unprecedented accuracy
potentially even ruling out theoretical bounds from Adler to account
for latent image formation. Our new approach is also insensitive to
a proposed frequency cutoff of cosmological origin due to a colored
noise collapse field, as well as avoid dissipative extensions of the
model. A possible experimental setup as in [67] could be used to
probe this regime in the future to confirm the unitarity of quantum
mechanics or to open up a door to new phenomena.

We also developed a numerical algorithm to test arbitrary geome-
tries for possible fifth forces and applied it to an experimental setup
used for sensing gravitational forces with a torsion pendulum [102].
Our code allows us to test the strength of the chameleon force correc-
tions and enables us to predict the influence of additional parts, like
separating membranes on the force strength. We could show that the
corrections to the measured gravitational force might become relevant
in future iterations of the experiment.



Part I

A P P E N D I X





A
S C H R Ö D I N G E R N E W T O N S I M U L AT I O N

The Mathematica code to simulate the free evolution of a gaussian
wave packet with the Schrödinger Newton equation. The initial values
can be input through the parameters a, m, NN, TT with a being the
width of the gaussian wave packet, m the mass and NN, TT the mesh
values in time and position. The initial parameters then get rescaled to
allow for a comparison to the value aa = 5 · 10−7m. The interval sizes
are determined by

∆r =
a

200
(A.1)

∆t =
a2m

2TTh̄
(A.2)

The scaling parameter is determined from a as follows

µ =
( aa

a

)1/3
(A.3)

and the rescaled parameters are ∆rr = µ3∆r, ∆tt = µ5∆t, mm =

µ−1m. The algorithm uses the Crank-Nicholson method to calculate
the time evolution.
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